A Numerical Study on Turbocharging System for PFI-SI Type Hydrogen Combustion Engine

2021 ◽  
Author(s):  
Jeyoung Kim ◽  
Srithar Rajoo
Author(s):  
Ana Marta Souza ◽  
Antônio César Valadares de Oliveira ◽  
Enrico Temporim Ribeiro ◽  
Francisco Souza ◽  
Marcelo Colombo Chiari

2021 ◽  
pp. 146808742110222
Author(s):  
Xiang Li ◽  
Yiqiang Pei ◽  
Zhijun Peng ◽  
Tahmina Ajmal ◽  
Khaqan-Jim Rana ◽  
...  

In order to decrease Carbon Dioxide (CO2) emissions, Oxy-Fuel Combustion (OFC) technology with Carbon Capture and Storage (CCS) is being developed in Internal Combustion Engine (ICE). In this article, a numerical study about the effects of intake charge on OFC was conducted in a dual-injection. Spark Ignition (SI) engine, with Gasoline Direct Injection (GDI), Port Fuel Injection (PFI) and P-G (50% PFI and 50% GDI) three injection strategies. The results show that under OFC with fixed Oxygen Mass Fraction (OMF) and intake temperature, the maximum Brake Mean Effective Pressure (BMEP) is each 5.671, 5.649 and 5.646 bar for GDI, P-G and PFI strategy, which leads to a considerable decrease compared to Conventional Air Combustion (CAC). [Formula: see text], [Formula: see text] and [Formula: see text] of PFI are the lowest among three injection strategies. With intake temperature increases from 298 to 378 K, the reduction of BMEP can be up to 12.68%, 12.92% and 12.75% for GDI, P-G and PFI, respectively. Meantime, there is an increase of about 3% in Brake Specific Fuel Consumption (BSFC) and Brake Specific Oxygen Consumption (BSOC). Increasing OMF can improve the performance of BMEP and BSFC, and the trend is more apparent under GDI strategy. Besides, an increasing tendency can be observed for cylinder pressure and in-cylinder temperature under all injection strategies with the increase of OMF.


2011 ◽  
Vol 63-64 ◽  
pp. 237-240
Author(s):  
Qi Xin Sun ◽  
Limin Chen

In recent years, the internal combustion engine has been widely used through technological advances to improve its environmental performance. Mechanical and electrical integration of the engine turbocharging system is based on conventional turbocharging system to increase motor in parallel with the turbocharger and the corresponding reversible energy storage components, so that achieve by adjusting the energy input or output direction and the size of the motor to adjust the exhaust turbocharger operating point and the gas supply function. According to matching requirements of light vehicle diesel engine, the analysis model of exhaust gas energy is obtained through qualitative analysis of exhaust gas energy in turbocharged diesel engine.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2362
Author(s):  
Savvas Savvakis ◽  
Dimitrios Mertzis ◽  
Elias Nassiopoulos ◽  
Zissis Samaras

The current paper investigates two particular features of a novel rotary split engine. This internal combustion engine incorporates a number of positive advantages in comparison to conventional reciprocating piston engines. As a split engine, it is characterized by a significant difference between the expansion and compression ratios, the former being higher. The processes are decoupled and take place simultaneously, in different chambers and on the different sides of the rotating pistons. Initially, a brief description of the engine’s structure and operating principle is provided. Next, the configuration of the compression chamber and the sealing system are examined. The numerical study is conducted using CFD simulation models, with the relevant assumptions and boundary conditions. Two parameters of the compression chamber were studied, the intake port design (initial and optimized) and the sealing system size (short and long). The best option was found to be the combination of the optimized intake port design with the short seal, in order to keep the compression chamber as close as possible to the engine shaft. A more detailed study of the sealing system included different labyrinth geometries. It was found that the stepped labyrinth achieves the highest sealing efficiency.


Author(s):  
E. Kapusuz ◽  
B. Ekici

An experimental and numerical study is carried out to evaluate the significance of gas leakage for a non-lube optically accessible internal combustion engine and to obtain estimation for the gas flow out of the combustion chamber at each engine cycle and its effect on the in-cylinder component states during optical engine’s operation. Attention is paid to blow-by and circumferential flow through the gaps between the piston rings and the liner. Optical engines are typically operated without lubrication to avoid window fouling and generation of fluorescence by oil particles that interfere with laser diagnostic signals, in view of this circumstance significant blow-by is expected in optical engines due to lack of “wet-seal” on the cylinder walls which permits circumferential flow of gases through the piston ring pack region resulting in increased blow-by. Semi analytical model estimating the mass loss rate is incorporated into zero dimensional thermodynamic IC engine model which simulates in-cylinder processes. Predicted results are compared for leaking and non-leaking engine simulations.


2018 ◽  
Author(s):  
Deborah Domingos da Rocha ◽  
Fabio de Castro Radicchi ◽  
Paulo César de Ferreira Gomes ◽  
Marcello Brunocilla ◽  
Ramon Molina Valle

Author(s):  
Mohamed F. Al-Dawody ◽  
◽  
Khaled A. Al-Farhany ◽  
Naseer H. Hamza ◽  
Dhafer A. Hamzah ◽  
...  

Great attention is directed towards the study of the spray phenomena theoretically and experimentally due to its dramatic effect on the combustion process that occurred in an internal combustion engine, in particular, the diesel engine. The spray macroscopic characteristic of diesel engines fueled with two different biodiesel fuels in addition to nominal diesel under various injection pressures has been investigated numerically in this work. The selected biofuels are Rapeseed methyl ester (RME), Waste cooking oil methyl ester (WCOME). The Russian simulation software Diesel-RK is used in this work. Four different injection pressures are used which are 200, 500, 800 and 1000 bar respectively. It is found that RME has higher spray penetration with a narrow spray angle due to high viscosity and large momentum compared to diesel fuel. The results reported that biodiesels have greater Sauter mean diameter (SMD) compared to pure diesel because of their higher viscosity and surface tension. Promising reduction in SMD comes with WCOME as the injection pressure increases. Cylinder pressure along with heat release is reduced in the case of biodiesel due to the reduction in heating values. The lowest ability to produce smoke is recorded for WCOME where 93% reduction is achieved followed by a 57% reduction for RME as compared to diesel. The obtained results are compared with the results of other researcher and the convergence between them is observed.


2021 ◽  
Vol 312 ◽  
pp. 07022
Author(s):  
Alfredo Lanotte ◽  
Vincenzo De Bellis ◽  
Enrica Malfi

Nowadays there is an increasing interest in carbon-free fuels such as ammonia and hydrogen. Those fuels, on one hand, allow to drastically reduce CO2 emissions, helping to comply with the increasingly stringent emission regulations, and, on the other hand, could lead to possible advantages in performances if blended with conventional fuels. In this regard, this work focuses on the 1D numerical study of an internal combustion engine supplied with different fuels: pure gasoline, and blends of methane-hydrogen and ammonia-hydrogen. The analyses are carried out with reference to a downsized turbocharged two-cylinder engine working in an operating point representative of engine operations along WLTC, namely 1800 rpm and 9.4 bar of BMEP. To evaluate the potential of methane-hydrogen and ammonia-hydrogen blends, a parametric study is performed. The varied parameters are air/fuel proportions (from 1 up to 2) and the hydrogen fraction over the total fuel. Hydrogen volume percentages up to 60% are considered both in the case of methane-hydrogen and ammonia-hydrogen blends. Model predictive capabilities are enhanced through a refined treatment of the laminar flame speed and chemistry of the end gas to improve the description of the combustion process and knock phenomenon, respectively. After the model validation under pure gasoline supply, numerical analyses allowed to estimate the benefits and drawbacks of considered alternative fuels in terms of efficiency, carbon monoxide, and pollutant emissions.


Sign in / Sign up

Export Citation Format

Share Document