MgO PSZ (A Versatile High Tech Ceramic) Property Values/Potential Applications

1986 ◽  
Author(s):  
Andrew Michelmore ◽  
Steven Ryan ◽  
Rudy Vallee

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1525
Author(s):  
Hao-ran Qi ◽  
Deng-xiong Shen ◽  
Yan-jiang Jia ◽  
Yuan-cheng An ◽  
Hao Wu ◽  
...  

High-temperature-resistant polymeric adhesives with high servicing temperatures and high adhesion strengths are highly desired in aerospace, aviation, microelectronic and other high-tech areas. The currently used high-temperature resistant polymeric adhesives, such as polyamic acid (PAA), are usually made from the high contents of solvents in the composition, which might cause adhesion failure due to the undesirable voids caused by the evaporation of the solvents. In the current work, electrospun preimidized polyimide (PI) nano-fibrous membranes (NFMs) were proposed to be used as solvent-free or solvent-less adhesives for stainless steel adhesion. In order to enhance the adhesion reliability of the PI NFMs, thermally crosslinkable phenylethynyl end-cappers were incorporated into the PIs derived from 3,3’,4,4’-oxydiphthalic anhydride (ODPA) and 3,3-bis[4-(4-aminophenoxy)phenyl]phthalide (BAPPT). The derived phenylethynyl-terminated PETI-10K and PETI-20K with the controlled molecular weights of 10,000 g mol−1 and 20,000 g mol−1, respectively, showed good solubility in polar aprotic solvents, such as N-methyl-2-pyrrolidinone (NMP) and N,N-dimethylacetamide (DMAc). The PI NFMs were successfully fabricated by electrospinning with the PETI/DMAc solutions. The ultrafine PETI NFMs showed the average fiber diameters (dav) of 627 nm for PETI-10K 695 nm for PETI-20K, respectively. The PETI NFMs showed good thermal resistance, which is reflected in the glass transition temperatures (Tgs) above 270 °C. The PETI NFMs exhibited excellent thermoplasticity at elevated temperatures. The stainless steel adherends were successfully adhered using the PETI NFMs as the adhesives. The PI NFMs provided good adhesion to the stainless steels with the single lap shear strengths (LSS) higher than 20.0 MPa either at room temperature (25 °C) or at an elevated temperature (200 °C).



2020 ◽  
Vol 23 (4) ◽  
pp. 716-726
Author(s):  
Thanh Khoa Phung ◽  
Quynh-Thy Song Nguyen ◽  
Khanh B. Vu ◽  
Giang Duy-Le Vo ◽  
Vinh Ngoc Nguyen

The conversion of waste lignin from the paper and pulp industry is a potential process to produce chemicals and materials in the industry. With the development and the demand for the pulp and paper industry, the amount of waste lignin will increase remarkably. In Vietnam, the forest tree for the pulp industry is abundant, and the pulp industry has increased in recent years. In parallel, the government planned to develop the material resource and high-tech factories for this industry. In this work, we summarized the pulp and paper industry in Vietnam, then suggest the potential applications of waste lignin in several valuable products.



2003 ◽  
Vol 29 (2-3) ◽  
pp. 269-299
Author(s):  
Janna C. Merrick

Main Street in Sarasota, Florida. A high-tech medical arts building rises from the east end, the county's historic three-story courthouse is two blocks to the west and sandwiched in between is the First Church of Christ, Scientist. A verse inscribed on the wall behind the pulpit of the church reads: “Divine Love Always Has Met and Always Will Meet Every Human Need.” This is the church where William and Christine Hermanson worshipped. It is just a few steps away from the courthouse where they were convicted of child abuse and third-degree murder for failing to provide conventional medical care for their seven-year-old daughter.This Article is about the intersection of “divine love” and “the best interests of the child.” It is about a pluralistic society where the dominant culture reveres medical science, but where a religious minority shuns and perhaps fears that same medical science. It is also about the struggle among different religious interests to define the legal rights of the citizenry.



Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.



Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.



Author(s):  
Amanda K. Petford-Long ◽  
A. Cerezo ◽  
M.G. Hetherington

The fabrication of multilayer films (MLF) with layer thicknesses down to one monolayer has led to the development of materials with unique properties not found in bulk materials. The properties of interest depend critically on the structure and composition of the films, with the interfacial regions between the layers being of particular importance. There are a number of magnetic MLF systems based on Co, several of which have potential applications as perpendicular magnetic (e.g Co/Cr) or magneto-optic (e.g. Co/Pt) recording media. Of particular concern are the effects of parameters such as crystallographic texture and interface roughness, which are determined by the fabrication conditions, on magnetic properties and structure.In this study we have fabricated Co-based MLF by UHV thermal evaporation in the prechamber of an atom probe field-ion microscope (AP). The multilayers were deposited simultaneously onto cobalt field-ion specimens (for AP and position-sensitive atom probe (POSAP) microanalysis without exposure to atmosphere) and onto the flat (001) surface of oxidised silicon wafers (for subsequent study in cross-section using high-resolution electron microscopy (HREM) in a JEOL 4000EX. Deposi-tion was from W filaments loaded with material in the form of wire (Co, Fe, Ni, Pt and Au) or flakes (Cr). The base pressure in the chamber was around 8×10−8 torr during deposition with a typical deposition rate of 0.05 - 0.2nm/s.



2020 ◽  
Vol 13 (5) ◽  
pp. 1429-1461 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xiaofei Yang ◽  
Keegan R. Adair ◽  
Changhong Wang ◽  
...  

This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.



2019 ◽  
Vol 10 (45) ◽  
pp. 6116-6121 ◽  
Author(s):  
Tan Ji ◽  
Lei Xia ◽  
Wei Zheng ◽  
Guang-Qiang Yin ◽  
Tao Yue ◽  
...  

We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.



2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.



2019 ◽  
Vol 50 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Christine Holyfield ◽  
Sydney Brooks ◽  
Allison Schluterman

Purpose Augmentative and alternative communication (AAC) is an intervention approach that can promote communication and language in children with multiple disabilities who are beginning communicators. While a wide range of AAC technologies are available, little is known about the comparative effects of specific technology options. Given that engagement can be low for beginning communicators with multiple disabilities, the current study provides initial information about the comparative effects of 2 AAC technology options—high-tech visual scene displays (VSDs) and low-tech isolated picture symbols—on engagement. Method Three elementary-age beginning communicators with multiple disabilities participated. The study used a single-subject, alternating treatment design with each technology serving as a condition. Participants interacted with their school speech-language pathologists using each of the 2 technologies across 5 sessions in a block randomized order. Results According to visual analysis and nonoverlap of all pairs calculations, all 3 participants demonstrated more engagement with the high-tech VSDs than the low-tech isolated picture symbols as measured by their seconds of gaze toward each technology option. Despite the difference in engagement observed, there was no clear difference across the 2 conditions in engagement toward the communication partner or use of the AAC. Conclusions Clinicians can consider measuring engagement when evaluating AAC technology options for children with multiple disabilities and should consider evaluating high-tech VSDs as 1 technology option for them. Future research must explore the extent to which differences in engagement to particular AAC technologies result in differences in communication and language learning over time as might be expected.



Sign in / Sign up

Export Citation Format

Share Document