A Practical Calculation Method for Injection Pressure and Spray Penetration in Diesel Engines

1992 ◽  
Author(s):  
Min Xu ◽  
Keiya Nishida ◽  
Hiroyuki Hiroyasu
Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 982
Author(s):  
Yew Heng Teoh ◽  
Heoy Geok How ◽  
Farooq Sher ◽  
Thanh Danh Le ◽  
Hwai Chyuan Ong ◽  
...  

Biodiesel has gained popularity in diesel engines as a result of the rapid decline of fossil fuels and population growth. The processing of biodiesel from non-edible Moringa Oleifera was investigated using a single-step transesterification technique. Both fuels had their key physicochemical properties measured and investigated. In a common-rail diesel engine, the effects of MB50 fuel blend on the symmetric characteristics of engine-out responses were evaluated under five load settings and at 1000 rpm. As compared to standard diesel, MB50 increased brake thermal efficiency (BTE), and nitrogen oxides (NOx) emissions while lowering brake specific fuel consumption (BSFC), and smoke emissions for all engine loads. A further study of injection pressure and start of injection (SOI) timing for MB50 fuel was optimized using response surface methodology (RSM). The RSM optimization resulted in improved combustion dynamics due to symmetry operating parameters, resulting in a simultaneous decrease in NOx and smoke emissions without sacrificing BTE. RSM is an efficient optimization method for achieving optimal fuel injection parameter settings, as can be deduced. As a result, a clearer understanding of the use of MB50 fuel in diesel engines can be given, allowing for the best possible engine efficiency.


2011 ◽  
Vol 347-353 ◽  
pp. 66-69
Author(s):  
Jian Xin Liu ◽  
Song Liu ◽  
Hui Yong Du ◽  
Zhan Cheng Wang ◽  
Bin Xu

The fuel spray images were taken with an equipment (camera-flash-injection) which has been synchronized with a purpose made electronic system under the condition of the high pressure common rail in two injection pressure has been expressed in this paper. It is discovered when fitting spray tip penetration that after jet breakup for a period of time, the spray tip begin to slow down rapidly, and the speed of spray tip running becomes smooth. Hiroyasu and other traditional tip penetration fitting formula are fitting larger to this phase. This is because that after jet breakup, the secondary breakup of striker particles will occur under the influence of the aerodynamic, surface tension and viscosity force. Therefore, a spray penetration fitting formula containing secondary breakup time to fit penetration in three sections was proposed in this paper. Results show that when pressure difference increase, both first and second breakup time become earlier. The former is because of gas-liquid relative velocity increasing, while the latter is due to high speed interface movement acceleration increasing.


2017 ◽  
Vol 31 (6) ◽  
pp. 481-485 ◽  
Author(s):  
Tadashi Watabe ◽  
Kohei Hanaoka ◽  
Sadahiro Naka ◽  
Yasukazu Kanai ◽  
Hayato Ikeda ◽  
...  

1984 ◽  
Vol 1984 (155) ◽  
pp. 151-163 ◽  
Author(s):  
Seiji Takezawa ◽  
Tsugukiyo Hirayama ◽  
Celso Kazuyuki Morooka

Author(s):  
M P Ashok ◽  
C G Saravanan

Diesel engines are employed as the major propulsion power sources because of their simple, robust structure and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, an increase in the use of diesel engines causes a shortage of fossil fuel and results in a greater degree of pollution. To regulate the above, identifying an alternative fuel to the diesel engine with less pollution is essential. Ethanol–diesel emulsion is one such method, used for the preparation of an alternative fuel for the diesel engine. Experimental investigations were carried out to compare the performance of diesel fuel with different ratios 50D: 50E (50 per cent diesel No: 2: 50 per cent ethanol –100 per cent proof) and 60D: 40E emulsified fuels. In the next phase, experiments were conducted for the selected emulsified fuel ratio 50D: 50E for different high injection pressures and the results are compared. The results show that for the emulsified fuel ratios, there is a marginal increase in torque, power, NO x, emissions, and decreasing values of carbon monoxide (CO), sulphur dioxide (SO2) emissions at the maximum speed conditions, compared with diesel fuel. Also, it is found that an increase in injection pressure of the engine running with emulsified fuel decreases CO and smoke emissions especially between 1500 to 2000 r/min with respect to the diesel fuel.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1358-1362
Author(s):  
Jin Sheng Han ◽  
Hao Ran Liu ◽  
Shu Ping Cong

The fire resistance of concrete filled steel tubular column is usually obtained by the numerical analysis method, which is difficult to operate and not convenient in the actual civil engineering. So it is necessary to study the simplified calculation method. A large number of numerical simulation results of the temperature distribution of the section and the bearing capacity at high temperature of the concrete filled steel tubular columns are analyzed. The influences of secondary parameters are simplified. The simplified calculation method at 150 min and 180 min for the bearing capacity at high temperature of concrete filled steel tubular columns subjected to axial compression and fire is presented on the basis of comprehensive analysis of the numerical calculation results. The calculation results can be used as the basis to judge the fire resistance. It is shown by the comparison with the experimental results that the precision of the simplified calculation method can meet the requirements of engineering application.


Sign in / Sign up

Export Citation Format

Share Document