Numerical Study on Skin Friction and Shock Inception in Various Geometries of Supersonic Nozzle

Author(s):  
E.I. Jassim

In the present study, a numerical simulation is conducted to predict the influence of convergent-divergent nozzle geometry and NPR on the skin friction and shockwave location. Various shapes of nozzles are numerically simulated using the Computational Fluid Dynamics code. The shock position is examined to demonstrate the impact of nozzle shape on its location. Skin friction is shown to be smoothly decreasing at the divergent part of the nozzle for all NPRs lower than 2.0. However, an inverse behavioural trend was observed at NPR equal to 2. This could be attributed to the fact that the large disturbance of fluid near the wall is the major factor behind such an oddity. The results also show that the shock position is reliant on the nozzle geometry at certain NPR.

2013 ◽  
Vol 645 ◽  
pp. 208-216
Author(s):  
Rong Huang ◽  
Naiang Wang

Air flow and pollutant dispersion characteristics in a real valley city are studied under the real boundary condition. The 3D computational fluid dynamics using Reynolds-averaged Navier-Stokes modeling was carried out in Lanzhou which is a typical valley city in Northwest, China. The standard κ­-ε turbulence model as a simplified computational fluid dynamics model is used to provide moderately fast simulations of turbulent airflow in an urban environment. The modeled flow field indicated that the geometry, wind direction and source location had a significant effects on the flow field. The flow shows the funnelling is rather obvious when the wind flow through the narrow area in the middle of the city. It is obvious that in the high-altitude region, due to the impact of high and low differential pressure and terrain, SO2 and NO2 formed two cyclic concentration field in the dispersion process.


2019 ◽  
Vol 286 ◽  
pp. 07006
Author(s):  
A. Agriss ◽  
M. Agouzoul ◽  
A. Ettaouil

The idea behind this work comes from the question: What is the impact of plate corrugations on drag? In this context, a numerical study of laminar incompressible flow over a flat plate and over corrugated plates is carried out. Numerical analysis is performed for low Reynolds numbers (Re= 10, Re = 50, Re = 100, Re = 500, Re =1000) using the computational fluid dynamics (CFD) software ANSYS FLUENT. Simulations results are compared to each others and with those of the reference plate (flat plate (figure 4a)). Comparisons are made via drag coefficient Cd. This work is the beginning of a study that evaluates the impact of corrugations on drag reduction on a flat plate.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Xiana Romaní Fernández ◽  
Hermann Nirschl

Centrifugal separation equipment, such as solid bowl centrifuges, is used to carry out an effective separation of fine particles from industrial fluids. Knowledge of the streams and sedimentation behavior inside solid bowl centrifuges is necessary to determine the geometry and the process parameters that lead to an optimal performance. Regarding a given industrial centrifuge geometry, a grid was built to calculate numerically the multiphase flow of water, air, and particles with a computational fluid dynamics (CFD) software. The effect of internal radial baffles on the multiphase flow was investigated. The results show that the baffles are helpful for the acceleration of the fluid, but they disturb the axial boundary layer, making it irregular, and originate a secondary circulating flow which hinders the sedimentation of small particles.


2018 ◽  
Vol 202 ◽  
pp. 02007
Author(s):  
Yam Ke San ◽  
Gordon Chiew ◽  
Chin Howe ◽  
Vincent Chieng Chen Lee ◽  
Sukanta Roy

This work presents a numerical study on the effect of T-shaped bilge keels on the roll damping of a conventional boat. A scaled boat model with the same dimensions as that of Irkal et al. [2] was fitted with two T-shaped bilge keels at the edges of the model. Computational Fluid Dynamics method was employed to simulate the roll decay motion of the boat. The motion of the boat is captured using a 6DOF model and the Overset grid approach. Comparison was performed on the damping characteristics of the conventional I-shaped and the T-shaped bilge keels. In addition, the impact of the aspect ratio of the keel bilges on the roll damping of the boat was evaluated. It was found that the bilge keel aspect ratio influences the damping coefficient non-linearly. Sufficiently large aspect ratio, i.e. an aspect ratio greater than 2, is necessary in order to obtain an effective damping on the peak angle.


2014 ◽  
Vol 629 ◽  
pp. 97-103
Author(s):  
Afshin Banazadeh ◽  
Farzad Banazadeh

This paper provides an understanding of counter-flow fluidic thrust vectoring, in the presence of the secondary air vacuum, applied to the exhaust nozzle of a micro-jet engine. An analytical and numerical study is performed here on a divergent collar surface adjacent to the cylindrical exhaust duct system. The vectoring angle is controlled by manipulating the momentum flux through a vacuum gap that is located on a circle concentric to the main nozzle. Three dimensional numerical simulations are conducted by utilizing a computational fluid dynamics model with two-equation standard k-ε turbulence model to study the pressure and velocity distribution of internal flow and nozzle geometry. Moreover, an analytical validation is carried out based on the known mathematical form of the governing equations of fluid dynamics over the sinusoidal wall. It is shown that the analytical results are in good agreement with numerical simulations, which also show that the pressure coefficient over the collar surface has the same trend as given by computational simulation. Similarly, the results of the numerical method are also verified against experimental results that were approved by previous research in area of numerical model for co-flow fluidic thrust vectoring technique.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 605
Author(s):  
Anum Shafiq ◽  
Ghulam Rasool ◽  
Hammad Alotaibi ◽  
Hassan M. Aljohani ◽  
Abderrahim Wakif ◽  
...  

This numerical study aims to interpret the impact of non-linear thermal radiation on magnetohydrodynamic (MHD) Darcy-Forchheimer Casson-Water/Glycerine nanofluid flow due to a rotating disk. Both the single walled, as well as multi walled, Carbon nanotubes (CNT) are invoked. The nanomaterial, thus formulated, is assumed to be more conductive as compared to the simple fluid. The properties of effective carbon nanotubes are specified to tackle the onward governing equations. The boundary layer formulations are considered. The base fluid is assumed to be non-Newtonian. The numerical analysis is carried out by invoking the numerical Runge Kutta 45 (RK45) method based on the shooting technique. The outcomes have been plotted graphically for the three major profiles, namely, the radial velocity profile, the tangential velocity profile, and temperature profile. For skin friction and Nusselt number, the numerical data are plotted graphically. Major outcomes indicate that the enhanced Forchheimer number results in a decline in radial velocity. Higher the porosity parameter, the stronger the resistance offered by the medium to the fluid flow and consequent result is seen as a decline in velocity. The Forchheimer number, permeability parameter, and porosity parameter decrease the tangential velocity field. The convective boundary results in enhancement of temperature facing the disk surface as compared to the ambient part. Skin-friction for larger values of Forchheimer number is found to be increasing. Sufficient literature is provided in the introduction part of the manuscript to justify the novelty of the present work. The research greatly impacts in industrial applications of the nanofluids, especially in geophysical and geothermal systems, storage devices, aerospace engineering, and many others.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1425
Author(s):  
Tarek Bouzennada ◽  
Farid Mechighel ◽  
Kaouther Ghachem ◽  
Lioua Kolsi

A 2D-symmetric numerical study of a new design of Nano-Enhanced Phase change material (NEPCM)-filled enclosure is presented in this paper. The enclosure is equipped with an inner tube allowing the circulation of the heat transfer fluid (HTF); n-Octadecane is chosen as phase change material (PCM). Comsol-Multiphysics commercial code was used to solve the governing equations. This study has been performed to examine the heat distribution and melting rate under the influence of the inner-tube position and the concentration of the nanoparticles dispersed in the PCM. The inner tube was located at three different vertical positions and the nanoparticle concentration was varied from 0 to 0.06. The results revealed that both heat transfer/melting rates are improved when the inner tube is located at the bottom region of the enclosure and by increasing the concentration of the nanoparticles. The addition of the nanoparticles enhances the heat transfer due to the considerable increase in conductivity. On the other hand, by placing the tube in the bottom area of the enclosure, the liquid PCM gets a wider space, allowing the intensification of the natural convection.


Sign in / Sign up

Export Citation Format

Share Document