scholarly journals Determination of Six Transmembrane Protein of Prostate 2 Gene Expression and Intracellular Localization in Prostate Cancer

2017 ◽  
Vol 16 (4) ◽  
pp. 112-118
Author(s):  
Bora İrer ◽  
Ömer Demir ◽  
Aykut Kefi ◽  
Güven Aslan
Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3862
Author(s):  
Motasim Masood ◽  
Stefan Grimm ◽  
Mona El-Bahrawy ◽  
Ernesto Yagüe

Transmembrane protein with an EGF-like and two Follistatin-like domains 2 (TMEFF2) is a 374-residue long type-I transmembrane proteoglycan which is proteolytically shed from the cell surface. The protein is involved in a range of functions including metabolism, neuroprotection, apoptosis, embryonic development, onco-suppression and endocrine function. TMEFF2 is methylated in numerous cancers, and an inverse correlation with the stage, response to therapy and survival outcome has been observed. Moreover, TMEFF2 methylation increases with breast, colon and gastric cancer progression. TMEFF2 is methylated early during oncogenesis in breast and colorectal cancer, and the detection of methylated free-circulating TMEFF2 DNA has been suggested as a potential diagnostic tool. The TMEFF2 downregulation signature equals and sometimes outperforms the Gleason and pathological scores in prostate cancer. TMEFF2 is downregulated in glioma and cotricotropinomas, and it impairs the production of adrenocorticotropic hormone in glioma cells. Interestingly, through binding the amyloid β protein, its precursor and derivatives, TMEFF2 provides neuroprotection in Alzheimer’s disease. Despite undergoing extensive investigation over the last two decades, the primary literature regarding TMEFF2 is incoherent and offers conflicting information, in particular, the oncogenic vs. onco-suppressive role of TMEFF2 in prostate cancer. For the first time, we have compiled, contextualised and critically analysed the vast body of TMEFF2-related literature and answered the apparent discrepancies regarding its function, tissue expression, intracellular localization and oncogenic vs. onco-suppressive role.


2005 ◽  
Vol 173 (4S) ◽  
pp. 110-110
Author(s):  
Kirsten L. Greene ◽  
Hong Zhao ◽  
Hiroaki Shiina ◽  
Long-Cheng Li ◽  
Yuichiro Tanaka ◽  
...  

Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 295-303 ◽  
Author(s):  
Jianzhi Zhang ◽  
Masatoshi Nei

Antennapedia (Antp)-class homeobox genes are involved in the determination of pattern formation along the anterior-posterior axis of the animal embryo. A phylogenetic analysis of Antp-class homeodomains of the nematode, Drosophila, amphioxus, mouse, and human indicates that the 13 cognate group genes of this gene family can be divided into two major groups, i.e., groups I and II. Group I genes can further be divided into subgroups A (cognate groups 1–2), B (cognate group 3), and C (cognate groups 4–8), and group II genes can be divided into subgroups D (cognate groups 9–10) and E (cognate groups 11–13), though this classification is somewhat ambiguous. Evolutionary distances among different amino acid sequences suggest that the divergence between group I and group II genes occurred ∼1000 million years (MY) ago, and the five different subgroups were formed by ∼600 MY ago, probably before the divergence of Pseudocoelomates (e.g., nematodes) and Coelomates (e.g., insects and chordates). Our results show that the genes that are phylogenetically close are also closely located in the chromosome, suggesting that the colinearity between the gene expression and gene arrangement was generated by successive tandem gene duplications and that the gene arrangement has been maintained by some sort of selection.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1167-1181
Author(s):  
Pei-Wen Chiang ◽  
David M Kurnit

Abstract Using a sensitive RT-QPCR assay, we analyzed the regulatory effects of sex and different dosage compensation mutations in Drosophila. To validate the assay, we showed that regulation for several genes indeed varied with the number of functional copies of that gene. We then confirmed that dosage compensation occurred for most genes we examined in male and female flies. Finally, we examined the effects on regulation of several genes in the MSL pathway, presumed to be involved in sex-dependent determination of regulation. Rather than seeing global alterations of either X chromosomal or autosomal genes, regulation of genes on either the X chromosome or the autosomes could be elevated, depressed, or unaltered between sexes in unpredictable ways for the various MSL mutations. Relative dosage for a given gene between the sexes could vary at different developmental times. Autosomal genes often showed deranged regulatory levels, indicating they were in pathways perturbed by X chromosomal changes. As exemplified by the BR-C locus and its dependent Sgs genes, multiple genes in a given pathway could exhibit coordinate regulatory modulation. The variegated pattern shown for expression of both X chromosomal and autosomal loci underscores the complexity of gene expression so that the phenotype of MSL mutations does not reflect only simple perturbations of genes on the X chromosome.


Sign in / Sign up

Export Citation Format

Share Document