scholarly journals An ab initio study of small gas molecule adsorption on the edge of N-doped sawtooth penta-graphene nanoribbons

2021 ◽  
Vol 13 ◽  
pp. 130003
Author(s):  
Thanh Tien Nguyen ◽  
Le Vo Phuong Thuan ◽  
Tran Yen Mi

Adsorption of the toxic gas molecules carbon monoxide (CO), carbon dioxide (CO2) and ammonia (NH3 ) on the edge of N-doped sawtooth penta-graphene nanoribbons (N:SSPGNRs) was studied using first-principles methods. Basing our study on density functional theory (DFT), we investigated adsorption configurations, adsorption energy, charge transfer, and the electronic properties of CO-, CO2 - and NH3- adsorbed ontoN:SSPGNRs. We found that CO and CO2 are chemisorbed on the edge of N:SSPGNR, while NH3 is physisorbed. Current-voltage (I–V) characteristics were also investigated using the non-equilibrium Green’s function (NEGF) approach. Gas molecules can modify the current of a device based on N:SSPGNRs. The results indicate the potential of using N:SSPGNRs for detection of these toxic gas molecules.

2018 ◽  
Vol 32 (29) ◽  
pp. 1850323
Author(s):  
Ting Ting Zhang ◽  
Cai Juan Xia ◽  
Bo Qun Zhang ◽  
Xiao Feng Lu ◽  
Yang Liu ◽  
...  

The electronic transport properties of oligo p-phenylenevinylene (OPV) molecule sandwiched with symmetrical or asymmetric tailoring graphene nanoribbons (GNRs) electrodes are investigated by nonequilibrium Green’s function in combination with density functional theory. The results show that different tailored GNRs electrodes can modulate the current–voltage characteristic of molecular devices. The rectifying behavior can be observed with respect to electrodes, and the maximum rectification ratio can reach to 14.2 in the asymmetric AC–ZZ GNRs and ZZ–AC–ZZ GNRs electrodes system. In addition, the obvious negative differential resistance can be observed in the symmetrical AC-ZZ GNRs system.


2020 ◽  
Vol 12 (02) ◽  
pp. 99-111
Author(s):  
Jamal A. Shlaka ◽  
◽  
Abbas H. Abo Nasria

Been studying the interactions between graphene - like aluminium nitride P(AlN)21 nano ribbons doped and defect (AlN)21Sheet, Molecules and small toxic gas molecules ( H2S), were built for two different adsorption sites on graphene like aluminium nitride P(AlN)21. this was done by employing B3LYP density functional theory (DFT) with 6-31G*(d,p) using Gaussian 09 program, Gaussian viw5.0 package of programs and Nanotube Modeller program 2018. the adsorptions of H2S on P(AlN)21, (C) atoms-doped P(AL-N)20 sheet, D-P(AL-N)20 and D-(C)atoms-doped P(AL-N)19 (on atom) with (Ead) (-0.468eV),(-0.473 eV), (-0.457 eV), (-0.4478 eV) and (-0.454 eV), respectively, (Ead) of H2S on the center ring of the P(AL-N)21, (C) atoms-doped P(AL-N)20 sheet, D-P(AL-N)20 and D-(C,B)atoms-doped P(AL-N)19 sheet are (-0.280 eV),(-0.465 eV), (-0.405 eV), (-0.468 eV) and -0.282 eV), respectively, are weak physisorption . However, the adsorptions of H2S, on the ((AlN)20 -B and D- (AlN)19 -B), (on atom N and center ring the sheet) are a strong chemisorption because of the (Ead) larger than -0.5 eV, due to the strong interaction, the ((AlN)20-B and D-(AlN)19-B), could catalyst or activate, through the results that we obtained, which are the improvement of the sheet P(AlN)21 by doping and per forming a defect in, it that can be used to design sensors. DOI: http://dx.doi.org/10.31257/2018/JKP/2020/120210


2018 ◽  
Vol 20 (3) ◽  
pp. 2048-2056 ◽  
Author(s):  
Dongqing Zou ◽  
Wenkai Zhao ◽  
Bin Cui ◽  
Dongmei Li ◽  
Desheng Liu

A theoretical investigation of the gas detection performance of manganese(ii) phthalocyanine (MnPc) molecular junctions for six different gases (NO, CO, O2, CO2, NO2, and NH3) is executed through a non-equilibrium Green's function technique in combination with spin density functional theory.


2021 ◽  
Author(s):  
Yonghu Wang ◽  
Shuangying Lei ◽  
Ran Gao ◽  
Xiaolong Sun ◽  
Jie Chen

Abstract Using the first-principles calculation based on density functional theory (DFT), we systematically studied the adsorption of sulfur-based gas molecules (H2S, SO2, SO3) on various metal-decorated phosphorenes. To avoid the formation of metal clusters on the surface of phosphorene, eleven metals (Li, Na, K, Rb, Cs, Ca, Sr, Ba, Ni, La, Tl) with bulk cohesive energy less than the binding energy on the phosphorene are considered. Except for H2S on Tl-decorated phosphorene, all metal decorations can improve the adsorption strength of phosphorene to sulfur-based gas molecules, and Eads(H2S) < Eads(SO2) < Eads(SO3) for the same metal decoration case. In addition, some metal-decorated phosphorene systems exhibit interesting magnetic and electrical changes after sulfur-based gas molecule adsorptions, indicating that these metal-decorated phosphorene systems are promising to be used for the detection and removal of sulfur-based gas molecules.


2020 ◽  
Vol 11 ◽  
pp. 1036-1044
Author(s):  
Babak Sakkaki ◽  
Hassan Rasooli Saghai ◽  
Ghafar Darvish ◽  
Mehdi Khatir

Recent experiments suggest graphene-based materials as candidates in future electronic and optoelectronic devices. In this paper, we propose to investigate new photodetectors based on graphene nanomeshes (GNMs). Density functional theory (DFT) calculations are performed to gain insight into electronic and optical characteristics of various GNM structures. To investigate the device-level properties of GNMs, their current–voltage characteristics are explored by DFT-based tight-binding (DFTB) in combination with non-equilibrium Green’s function (NEGF) methods. Band structure analysis shows that GNMs have both metallic and semiconducting properties depending on the arrangements of perforations. Also, absorption spectrum analysis indicates attractive infrared peaks for GNMs with semiconducting characteristics, making them better photodetectors than graphene nanoribbon (GNR)-based alternatives. The results suggest that GNMs can be potentially used in mid-infrared detectors with specific detectivity values that are 100-fold that of graphene-based devices and 1000-fold that of GNR-based devices. Hence, the special properties of graphene combined with the quantum feathers of the perforation makes it suitable for optical devices.


2018 ◽  
Vol 25 (03) ◽  
pp. 1850070 ◽  
Author(s):  
BAO-AN BIAN ◽  
YA-PENG ZHENG ◽  
PEI-PEI YUAN ◽  
BIN LIAO ◽  
YU-QIANG DING

We carry out first-principles calculations based on density functional theory and non-equilibrium Green’s function to investigate the electronic transport properties of a diarylethene-based molecule sandwiched between two Au electrodes. This molecular switch can be reversed between open and close forms by using light stimulation. We analyze the switch behavior of these two forms through the current–voltage curves, transmission spectra and molecular projected self-consistent Hamiltonian. It has been found that the current of the close form is significantly larger than the open form, and there is a large and stable switch ratio in a wide bias window. This result indicates that this molecule can become one of the good candidates for optical molecular switch in the future.


2020 ◽  
Author(s):  
Shuangying Lei ◽  
Ran Gao ◽  
Xiaolong Sun ◽  
Jie Chen

Abstract Using the first-principles calculation based on density functional theory (DFT), we systematically studied the adsorption of sulfur-based gas molecules (H2S, SO2, SO3) on various metal-decorated phosphorenes. To avoid the formation of metal clusters on the surface of phosphorene, eleven metals (Li, Na, K, Rb, Cs, Ca, Sr, Ba, Ni, La, Tl) with bulk cohesive energy less than the binding energy on the phosphorene are considered. Except for H2S on Tl-decorated phosphorene, all metal decorations can improve the adsorption strength of phosphorene to sulfur-based gas molecules, and Eads(H2S) < Eads(SO2) < Eads(SO3) for the same metal decoration case. In addition, some metal-decorated phosphorene systems exhibit interesting magnetic and electrical changes after sulfur-based gas molecule adsorptions, indicating that these metal-decorated phosphorene systems are promising to be used for the detection and removal of sulfur-based gas molecules.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 763 ◽  
Author(s):  
Shuai Yang ◽  
Zhiyong Wang ◽  
Xueqiong Dai ◽  
Jianrong Xiao ◽  
Mengqiu Long ◽  
...  

Phosphorene, due to its large surface-to-volume ratio and high chemical activity, shows potential application for gas sensing. In order to explore its sensing performance, we have performed the first-principles calculations based on density functional theory (DFT) to investigate the perfect and C-doped zigzag phosphorene nanoribbons (C-ZPNRs) with a series of small gas molecules (NH3, NO, NO2, H2, O2, CO, and CO2) adsorbed. The calculated results show that NH3, CO2, O2 gas molecules have relatively larger adsorption energies than other gas molecules, indicating that phosphorene is more sensitive to these gas molecules. For C-ZPNRs configuration, the adsorption energy of NO and NO2 increase and that of other gas molecules decrease. Interestingly, the adsorption energy of hydrogen is −0.229 eV, which may be suitable for hydrogen storage. It is hoped that ZPNRs may be a good sensor for (NH3, CO2 and O2) and C-ZPNRs may be useful for H2 storage.


2017 ◽  
Vol 16 (04) ◽  
pp. 1750032 ◽  
Author(s):  
Wen Liu ◽  
Fan-Hua Meng ◽  
Jian-Hua Zhao ◽  
Xiao-Hui Jiang

The electronic transport properties of hybrid nanoribbons constructed by substituting zigzag graphane nanoribbons (ZGaNRs) into zigzag graphene nanoribbons (ZGNRs) are investigated with the non-equilibrium Green’s function method and the density functional theory. Both symmetric and asymmetric ZGNRs are considered. The electronic transport of symmetric and asymmetric ZGNR-based hybrid nanoribbons behave distinctly differently from each other even in the presence of the same substitution positions of ZGaNRs. Moreover, the electronic transport of these hybrid systems is found to be enhanced or weakened compared with pristine ZGNRs depending on the substitution position and proportion. Our results suggest that such hybridization is an effective approach to modulate the transport properties of ZGNRs.


Sign in / Sign up

Export Citation Format

Share Document