scholarly journals Nonwoven Fabrics for Medical Use

1975 ◽  
Vol 45 (12) ◽  
pp. 635-640
Author(s):  
M. MAKI
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Payam Sadrolodabaee ◽  
Josep Claramunt ◽  
Mònica Ardanuy ◽  
Albert de la Fuente

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Stelbin Peter Figerez ◽  
Sudeshna Patra ◽  
G Rajalakshmi ◽  
Tharangattu N Narayanan

Abstract Respiratory masks having similar standards of ‘N95’, defined by the US National Institute for Occupational Safety and Health, will be highly sought after, post the current COVID-19 pandemic. Here, such a low-cost (∼$1/mask) mask design having electrostatic rechargeability and filtration efficiency of >95% with a quality factor of ∼20 kPa−1 is demonstrated. This filtration efficacy is for particles of size 300 nm. The tri-layer mask, named PPDFGO tri, contains nylon, modified polypropylene (PPY), and cotton nonwoven fabrics as three layers. The melt-spun PPY, available in a conventional N95 mask, modified with graphene oxide and polyvinylidene fluoride mixture containing paste using a simple solution casting method acts as active filtration layer. The efficacy of this tri-layer system toward triboelectric rechargeability using small mechanical agitations is demonstrated here. These triboelectric nanogenerator (TENG)-assisted membranes have high electrostatic charge retention capacity (∼1 nC/cm2 after 5 days in ambient condition) and high rechargeability even in very humid conditions (>80% RH). A simple but robust permeability measurement set up is also constructed to test these TENG-based membranes, where a flow rate of 30–35 L/min is maintained during the testing. Such a simple modification to the existing mask designs enabling their rechargeability via external mechanical disturbances, with enhanced usability for single use as well as for reuse with decontantamination, will be highly beneficial in the realm of indispensable personal protective equipment.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3198
Author(s):  
Justyna Frączyk ◽  
Sylwia Magdziarz ◽  
Ewa Stodolak-Zych ◽  
Ewa Dzierzkowska ◽  
Dorota Puchowicz ◽  
...  

It was shown that carbon nonwoven fabrics obtained from polyacrylonitrile fibers (PAN) by thermal conversion may be modified on the surface in order to improve their biological compatibility and cellular response, which is particularly important in the regeneration of bone or cartilage tissue. Surface functionalization of carbon nonwovens containing C–C double bonds was carried out using in situ generated diazonium salts derived from aromatic amines containing both electron-acceptor and electron-donor substituents. It was shown that the modification method characteristic for materials containing aromatic structures may be successfully applied to the functionalization of carbon materials. The effectiveness of the surface modification of carbon nonwoven fabrics was confirmed by the FTIR method using an ATR device. The proposed approach allows the incorporation of various functional groups on the nonwovens’ surface, which affects the morphology of fibers as well as their physicochemical properties (wettability). The introduction of a carboxyl group on the surface of nonwoven fabrics, in a reaction with 4-aminobenzoic acid, became a starting point for further modifications necessary for the attachment of RGD-type peptides facilitating cell adhesion to the surface of materials. The surface modification reduced the wettability (θ) of the carbon nonwoven by about 50%. The surface free energy (SFE) in the chemically modified and reference nonwovens remained similar, with the surface modification causing an increase in the polar component (ɣp). The modification of the fiber surface was heterogeneous in nature; however, it provided an attractive site of cell–materials interaction by contacting them to the fiber surface, which supports the adhesion process.


2016 ◽  
Vol 30 (4) ◽  
pp. 545-563 ◽  
Author(s):  
H Shanazari ◽  
GH Liaghat ◽  
H Hadavinia ◽  
A Aboutorabi

In addition to fiber properties, the fabric structure plays an important role in determining ballistic performance of composite body armor textile. Textile structures used in ballistic protection are woven fabrics, unidirectional (UD) fabric structures, and nonwoven fabrics. In this article, an analytical model based on wave propagation and energy balance between the projectile and the target is developed to analyze hybrid fabric panels for ballistic protection. The hybrid panel consists of two types of structure: woven fabrics as the front layers and UD material as the rear layers. The model considers different cross sections of surface of the target in the woven and UD fabric of the hybrid panel. Also the model takes into account possible shear failure by using shear strength together with maximum tensile strain as the failure criteria. Reflections of deformation waves at interface between the layers and also the crimp of the yarn are modeled in the woven part of the hybrid panel. The results show greater efficiency of woven fibers in front layers (more shear resistance) and UD yarns in the rear layers (more tensile resistance), leading to better ballistic performance. Also modeling the yarn crimp results in more trauma at the backface of the panel producing data closer to the experimental results. It was found that there is an optimum ratio of woven to UD materials in the hybrid ballistic panel.


1978 ◽  
Vol 13 (4) ◽  
pp. 401-415 ◽  
Author(s):  
Nasri S. Kawar ◽  
Francis A. Gunther ◽  
William F. Serat ◽  
Yutaka Iwata
Keyword(s):  

2012 ◽  
Vol 487 ◽  
pp. 644-648
Author(s):  
Yuan Liu ◽  
Lin Wang ◽  
Qing Yan Xu ◽  
Pei Jie Lin ◽  
Zhi Hong Guo ◽  
...  

Melt-blown generated PBT nonwoven fabrics usually have small fibril diameter, high flexibility, well heat and oil resistance. Therefore, they would have promising application such as vehicle filtering media. The rheological behavior of PBT with High Melt Flow Index for Melt-blown is investigated in this paper. It is a direction of the technology design and fabrication parameters .The relation of apparent viscosity and shear rate is analyzed, as well as flow activation energy and Non-Newtonian indexes. The results suggest that PBT with High Melt Flow Index is Non-Newtonian fluid. Apparent viscosity and flow activation energy show gradually decrease with increasing shear rate, exhibiting typical shear-thinning behavior.


Sign in / Sign up

Export Citation Format

Share Document