scholarly journals Why Does the Precursory Change of Seismicity Rate Tend to Be Quiescence?

2005 ◽  
Vol 57 (4) ◽  
pp. 441-444 ◽  
Author(s):  
Shozo MATSUMURA
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Tramelli ◽  
C. Godano ◽  
P. Ricciolino ◽  
F. Giudicepietro ◽  
S. Caliro ◽  
...  

AbstractThe knowledge of the dynamic of the Campi Flegrei calderic system is a primary goal to mitigate the volcanic risk in one of the most densely populated volcanic areas in the world. From 1950 to 1990 Campi Flegrei suffered three bradyseismic crises with a total uplift of 4.3 m. After 20 years of subsidence, the uplift started again in 2005 accompained by a low increment of the seismicity rate. In 2012 an increment in the seismic energy release and a variation in the gas composition of the fumaroles of Solfatara (in the central area of the caldera) were recorded. Since then, a slow and progressive increase in phenomena continued until today. We analyze the INGV - Osservatorio Vesuviano seismic catalogue of Campi Flegrei from 2000 to 2020 in order to look for any variation in the seismic parameters and compare them with geochemical monitored ones. A remarkable correlation between independent variables of earthquake cumulative number, CO/CO2 values and vertical ground deformation reveals a likely common origin. Moreover the correlation between all the variables here analysed enlightens that the same origin can cause the temporal behavior of all these variables. We interpret the seismological, geochemical and geodetic observable in terms of the injection of magmatic fluids into the hydrothermal system or its pressurization.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


1982 ◽  
Vol 72 (1) ◽  
pp. 93-111
Author(s):  
R. E. Habermann

abstract Changes in the rate of occurrence of smaller events have been recognized in the rupture zones of upcoming large earthquakes in several postearthquake and one preearthquake study. A data set in which a constant portion of the events in any magnitude band are consistently reported through time is crucial for the recognition of seismicity rate changes which are real (related to some process change in the earth). Such a data set is termed a homogeneous data set. The consistency of reporting of earthquakes in the NOAA Hypocenter Data File (HDF) since 1963 is evaluated by examining the cumulative number of events reported as a function of time for the entire world in eight magnitude bands. It is assumed that the rate of occurrence of events in the entire world is roughly constant on the time scale examined here because of the great size of the worldwide earthquake production system. The rate of reporting of events with magnitudes above mb = 4.5 has been constant or increasing since 1963. Significant decreases in the number of events reported per month in the magnitude bands below mb = 4.4 occurred during 1968 and 1976. These decreases are interpreted as indications of decreases in detection of events for two reasons. First, they occur at times of constant rates of occurrence and reporting of larger events. Second, the decrease during the late 1960's has also been recognized in the teleseismic data reported by the International Seismological Centre (ISC). This suggests that the decrease in the number of small events reported was related to facets of the earthquake reporting system which the ISC and NOAA share. The most obvious candidate is the detection system. During 1968, detection decreased in the United States, Central and South America, and portions of the South Pacific. This decrease is probably due to the closure of the VELA arrays, BMO, TFO, CPO, UBO, and WMO. During 1976, detection decreased in most of the seismically active regions of the western hemisphere, as well as in the region between Kamchatka and Guam. The cause of this detection decrease is unclear. These detection decreases seriously affect the amount of homogeneous background period available for the study of teleseismic seismicity rate changes. If events below the minimum magnitude of homogeneity are eliminated from the teleseismic data sets the resulting small numbers of events render many regions unsuitable for study. Many authors have reported seismicity rate decreases as possible precursors to great earthquakes. Few of these authors have considered detection decreases as possible explanations for their results. This analysis indicates that such considerations cannot be avoided in studies of teleseismic data.


1983 ◽  
Vol 73 (1) ◽  
pp. 219-236
Author(s):  
M. Wyss ◽  
R. E. Habermann ◽  
Ch. Heiniger

abstract The rate of occurrence of earthquakes shallower than 100 km during the years 1963 to 1980 was studied as a function of time and space along the New Hebrides island arc. Systematic examination of the seismicity rates for different magnitude bands showed that events with mb < 4.8 were not reported consistently over time. The seismicity rate as defined by mb ≧ 4.8 events was examined quantitatively and systematically in the source volumes of three recent main shocks and within two seismic gaps. A clear case of seismic quiescence could be shown to have existed before one of the large main shocks if a major asperity was excluded from the volume studied. The 1980 Ms = 8 rupture in the northern New Hebrides was preceded by a pattern of 9 to 12 yr of quiescence followed by 5 yr of normal rate. This pattern does not conform to the hypothesis that quiescence lasts up to the mainshock which it precedes. The 1980 rupture also did not fully conform to the gap hypothesis: half of its aftershock area covered part of a great rupture which occurred in 1966. A major asperity seemed to play a critical role in the 1966 and 1980 great ruptures: it stopped the 1966 rupture, and both parts of the 1980 double rupture initiated from it. In addition, this major asperity made itself known by a seismicity rate and stress drops higher than in the surrounding areas. Stress drops of 272 earthquakes were estimated by the MS/mb method. Time dependence of stress drops could not be studied because of changes in the world data set of Ms and mb values. Areas of high stress drops did not correlate in general with areas of high seismicity rate. Instead, outstandingly high average stress drops were observed in two plate boundary segments with average seismicity rate where ocean floor ridges are being subducted. The seismic gaps of the central and northern New Hebrides each contain seismically quiet regions. In the central New Hebrides, the 50 to 100 km of the plate boundary near 18.5°S showed an extremely low seismicity rate during the entire observation period. Low seismicity could be a permanent property of this location. In the northern New Hebrides gap, seismic quiescence started in mid-1972, except in a central volume where high stress drops are observed. This volume is interpreted as an asperity, and the quiescence may be interpreted as part of the preparation process to a future large main shock near 13.5°S.


2001 ◽  
Vol 1 (1/2) ◽  
pp. 83-92 ◽  
Author(s):  
C. Goltz

Abstract. Seismicity is a distributed process of great spatial and temporal variability and complexity. Efforts to characterise and describe the evolution of seismicity patterns have a long history. Today, the detection of changes in the spatial distribution of seismicity is still regarded as one of the most important approaches in monitoring and understanding seismicity. The problem of how to best describe these spatio-temporal changes remains, also in view of the detection of possible precursors for large earthquakes. In particular, it is difficult to separate the superimposed effects of different origin and to unveil the subtle (precursory) effects in the presence of stronger but irrelevant constituents. I present an approach to the latter two problems which relies on the Principal Components Analysis (PCA), a method based on eigen-structure analysis, by taking a time series approach and separating the seismicity rate patterns into a background component and components of change. I show a sample application to the Southern California area and discuss the promising results in view of their implications, potential applications and with respect to their possible precursory qualities.


Author(s):  
Iason Grigoratos ◽  
Ellen Rathje ◽  
Paolo Bazzurro ◽  
Alexandros Savvaidis

ABSTRACT In the past decade, several parts of central United States, including Oklahoma, have experienced unprecedented seismicity rates, following an increase in the volumes of wastewater fluids that are being disposed underground. In this article, we present a semi-empirical model to hindcast the observed seismicity given the injection time history. Our proposed recurrence model is a modified version of the Gutenberg–Richter relation, building upon the seismogenic index model, which predicts a linear relationship between the number of induced events and the injected volume. Our methodology accounts for the effects of spatiotemporal pore-pressure diffusion, the stressing-rate dependency of the time lag between injection and seismicity rate changes, and the rapid cessation of seismicity upon unloading. We also introduced a novel multiscale regression, which enabled us to produce grid-independent results of increased spatial resolution. Although the model is generic to be applicable in any region and has essentially only two free parameters for spatial calibration, it matches the earthquake time history of Oklahoma well across various scales, for both increasing and decreasing injection rates. In the companion paper (Grigoratos, Rathje, et al., 2020), we employ the model to distinguish the disposal-induced seismicity from the expected tectonic seismicity and test its forecasting potential.


2015 ◽  
pp. 201-258
Author(s):  
Serge A. Shapiro
Keyword(s):  

2020 ◽  
Vol 110 (2) ◽  
pp. 874-885
Author(s):  
David Marsan ◽  
Yen Joe Tan

ABSTRACT We define a seismicity model based on (1) the epidemic-type aftershock sequence model that accounts for earthquake clustering, and (2) a closed slip budget at long timescale. This is achieved by not permitting an earthquake to have a seismic moment greater than the current seismic moment deficit. This causes the Gutenberg–Richter law to be modulated by a smooth upper cutoff, the location of which can be predicted from the model parameters. We investigate the various regimes of this model that more particularly include a regime in which the activity does not die off even with a vanishingly small spontaneous (i.e., background) earthquake rate and one that bears strong statistical similarities with repeating earthquake time series. Finally, this model relates the earthquake rate and the geodetic moment rate and, therefore, allows to make sense of this relationship in terms of fundamental empirical law (the Gutenberg–Richter law, the productivity law, and the Omori law) and physical parameters (seismic coupling, tectonic loading rate).


2019 ◽  
Vol 60 (79) ◽  
pp. 14-22
Author(s):  
Samuel Taylor-Offord ◽  
Huw Horgan ◽  
John Townend ◽  
J. Paul Winberry

ABSTRACTChanging rates of water input can affect both the flow of glaciers and ice sheets and their propensity to crevasse. Here we examine geodetic and seismic observations during two substantial (10–18-times background velocity) rain-induced glacier accelerations at Haupapa/Tasman Glacier, New Zealand. Changes in rain rate result in glacier acceleration and associated uplift, which propagate down-glacier. This pattern of acceleration results in a change to the strain rate field, which correlates with an order of magnitude increase in the apparent seismicity rate and an overall down-glacier migration in located seismicity. After each acceleration event the apparent seismicity rate decreases to below the pre-acceleration rate for 3 days. This suggests that seismic events associated with surface crevasse growth occur early during phases of glacier acceleration due to elevated extensional stresses, and then do not occur again until stresses recover.


Sign in / Sign up

Export Citation Format

Share Document