Estimating the predictability of the seismicity rate: The 1964 eruption of Shiveluch Volcano

2016 ◽  
Vol 10 (6) ◽  
pp. 347-359 ◽  
Author(s):  
A. I. Malyshev
1997 ◽  
Vol 47 (2) ◽  
pp. 125-139 ◽  
Author(s):  
Olga A. Braitseva ◽  
Vera V. Ponomareva ◽  
Leopold D. Sulerzhitsky ◽  
Ivan V. Melekestsev ◽  
John Bailey

Detailed tephrochronological studies in Kamchatka Peninsula, Russia, permitted documentation of 24 Holocene key-marker tephra layers related to the largest explosive eruptions from 11 volcanic centers. Each layer was traced for tens to hundreds of kilometers away from the source volcano; its stratigraphic position, area of dispersal, age, characteristic features of grain-size distribution, and chemical and mineral composition confirmed its identification. The most important marker tephra horizons covering a large part of the peninsula are (from north to south; ages given in14C yr B.P.) SH2(≈1000 yr B.P.) and SH3(≈1400 yr B.P.) from Shiveluch volcano; KZ (≈7500 yr B.P.) from Kizimen volcano; KRM (≈7900 yr B.P.) from Karymsky caldera; KHG (≈7000 yr B.P.) from Khangar volcano; AV1(≈3500 yr B.P.), AV2(≈4000 yr B.P.), AV4(≈5500 yr B.P.), and AV5(≈5600 yr B.P.) from Avachinsky volcano; OP (≈1500 yr B.P.) from the Baraniy Amfiteatr crater at Opala volcano; KHD (≈2800 yr B.P.) from the “maar” at Khodutka volcano; KS1(≈1800 yr B.P.) and KS2(≈6000 yr B.P.) from the Ksudach calderas; KSht3(A.D. 1907) from Shtyubel cone in Ksudach volcanic massif; and KO (≈7700 yr B.P.) from the Kuril Lake-Iliinsky caldera. Tephra layers SH5(≈2600 yr B.P.) from Shiveluch volcano, AV3(≈4500 yr B.P.) from Avachinsky volcano, OPtr(≈4600 yr B.P.) from Opala volcano, KS3(≈6100 yr B.P.) and KS4(≈8800 yr B.P.) from Ksudach calderas, KSht1(≈1100 yr B.P.) from Shtyubel cone, and ZLT (≈4600 yr B.P.) from Iliinsky volcano cover smaller areas and have local stratigraphic value, as do the ash layers from the historically recorded eruptions of Shiveluch (SH1964) and Bezymianny (B1956) volcanoes. The dated tephra layers provide a record of the most voluminous explosive events in Kamchatka during the Holocene and form a tephrochronological timescale for dating and correlating various deposits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Tramelli ◽  
C. Godano ◽  
P. Ricciolino ◽  
F. Giudicepietro ◽  
S. Caliro ◽  
...  

AbstractThe knowledge of the dynamic of the Campi Flegrei calderic system is a primary goal to mitigate the volcanic risk in one of the most densely populated volcanic areas in the world. From 1950 to 1990 Campi Flegrei suffered three bradyseismic crises with a total uplift of 4.3 m. After 20 years of subsidence, the uplift started again in 2005 accompained by a low increment of the seismicity rate. In 2012 an increment in the seismic energy release and a variation in the gas composition of the fumaroles of Solfatara (in the central area of the caldera) were recorded. Since then, a slow and progressive increase in phenomena continued until today. We analyze the INGV - Osservatorio Vesuviano seismic catalogue of Campi Flegrei from 2000 to 2020 in order to look for any variation in the seismic parameters and compare them with geochemical monitored ones. A remarkable correlation between independent variables of earthquake cumulative number, CO/CO2 values and vertical ground deformation reveals a likely common origin. Moreover the correlation between all the variables here analysed enlightens that the same origin can cause the temporal behavior of all these variables. We interpret the seismological, geochemical and geodetic observable in terms of the injection of magmatic fluids into the hydrothermal system or its pressurization.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
E. Salaorni ◽  
M. Stoffel ◽  
O. Tutubalina ◽  
S. Chernomorets ◽  
I. Seynova ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


1982 ◽  
Vol 72 (1) ◽  
pp. 93-111
Author(s):  
R. E. Habermann

abstract Changes in the rate of occurrence of smaller events have been recognized in the rupture zones of upcoming large earthquakes in several postearthquake and one preearthquake study. A data set in which a constant portion of the events in any magnitude band are consistently reported through time is crucial for the recognition of seismicity rate changes which are real (related to some process change in the earth). Such a data set is termed a homogeneous data set. The consistency of reporting of earthquakes in the NOAA Hypocenter Data File (HDF) since 1963 is evaluated by examining the cumulative number of events reported as a function of time for the entire world in eight magnitude bands. It is assumed that the rate of occurrence of events in the entire world is roughly constant on the time scale examined here because of the great size of the worldwide earthquake production system. The rate of reporting of events with magnitudes above mb = 4.5 has been constant or increasing since 1963. Significant decreases in the number of events reported per month in the magnitude bands below mb = 4.4 occurred during 1968 and 1976. These decreases are interpreted as indications of decreases in detection of events for two reasons. First, they occur at times of constant rates of occurrence and reporting of larger events. Second, the decrease during the late 1960's has also been recognized in the teleseismic data reported by the International Seismological Centre (ISC). This suggests that the decrease in the number of small events reported was related to facets of the earthquake reporting system which the ISC and NOAA share. The most obvious candidate is the detection system. During 1968, detection decreased in the United States, Central and South America, and portions of the South Pacific. This decrease is probably due to the closure of the VELA arrays, BMO, TFO, CPO, UBO, and WMO. During 1976, detection decreased in most of the seismically active regions of the western hemisphere, as well as in the region between Kamchatka and Guam. The cause of this detection decrease is unclear. These detection decreases seriously affect the amount of homogeneous background period available for the study of teleseismic seismicity rate changes. If events below the minimum magnitude of homogeneity are eliminated from the teleseismic data sets the resulting small numbers of events render many regions unsuitable for study. Many authors have reported seismicity rate decreases as possible precursors to great earthquakes. Few of these authors have considered detection decreases as possible explanations for their results. This analysis indicates that such considerations cannot be avoided in studies of teleseismic data.


Author(s):  
Rezeda Z. Allaguvatova ◽  
Veronika B. Bagmet ◽  
Arthur Yu. v Nikulin ◽  
Shamil R. Abdullin ◽  
Andrey A. Gontcharo

During the species composition study of terrestrial cyanobacteria and algae from volcanic soils of Shiveluch Volcano (Kamchatka peninsula, Russia) eighteen taxa from five phyla were revealed: Cyanobacteria – 4, Bacillariophyta – 4, Ochrophyta – 2 (Eustigmatophyceae – 1, Xanthophyceae – 1), Charophyta – 1, Chlorophyta – 7 (Chlorophyceae – 2, Trebouxiophyceae – 5). Nitzschia communis Rabenhorst, Nitzschia palea (Kützing) W. Smith, Eolimna minima (Grunow) Lange-Bertalot, Eremochloris sp., Tetradesmus obliquus (Turpin) M.J. Wynne, Nostoc edaphicum Kondratyeva were most frequency.


1983 ◽  
Vol 73 (1) ◽  
pp. 219-236
Author(s):  
M. Wyss ◽  
R. E. Habermann ◽  
Ch. Heiniger

abstract The rate of occurrence of earthquakes shallower than 100 km during the years 1963 to 1980 was studied as a function of time and space along the New Hebrides island arc. Systematic examination of the seismicity rates for different magnitude bands showed that events with mb < 4.8 were not reported consistently over time. The seismicity rate as defined by mb ≧ 4.8 events was examined quantitatively and systematically in the source volumes of three recent main shocks and within two seismic gaps. A clear case of seismic quiescence could be shown to have existed before one of the large main shocks if a major asperity was excluded from the volume studied. The 1980 Ms = 8 rupture in the northern New Hebrides was preceded by a pattern of 9 to 12 yr of quiescence followed by 5 yr of normal rate. This pattern does not conform to the hypothesis that quiescence lasts up to the mainshock which it precedes. The 1980 rupture also did not fully conform to the gap hypothesis: half of its aftershock area covered part of a great rupture which occurred in 1966. A major asperity seemed to play a critical role in the 1966 and 1980 great ruptures: it stopped the 1966 rupture, and both parts of the 1980 double rupture initiated from it. In addition, this major asperity made itself known by a seismicity rate and stress drops higher than in the surrounding areas. Stress drops of 272 earthquakes were estimated by the MS/mb method. Time dependence of stress drops could not be studied because of changes in the world data set of Ms and mb values. Areas of high stress drops did not correlate in general with areas of high seismicity rate. Instead, outstandingly high average stress drops were observed in two plate boundary segments with average seismicity rate where ocean floor ridges are being subducted. The seismic gaps of the central and northern New Hebrides each contain seismically quiet regions. In the central New Hebrides, the 50 to 100 km of the plate boundary near 18.5°S showed an extremely low seismicity rate during the entire observation period. Low seismicity could be a permanent property of this location. In the northern New Hebrides gap, seismic quiescence started in mid-1972, except in a central volume where high stress drops are observed. This volume is interpreted as an asperity, and the quiescence may be interpreted as part of the preparation process to a future large main shock near 13.5°S.


2001 ◽  
Vol 1 (1/2) ◽  
pp. 83-92 ◽  
Author(s):  
C. Goltz

Abstract. Seismicity is a distributed process of great spatial and temporal variability and complexity. Efforts to characterise and describe the evolution of seismicity patterns have a long history. Today, the detection of changes in the spatial distribution of seismicity is still regarded as one of the most important approaches in monitoring and understanding seismicity. The problem of how to best describe these spatio-temporal changes remains, also in view of the detection of possible precursors for large earthquakes. In particular, it is difficult to separate the superimposed effects of different origin and to unveil the subtle (precursory) effects in the presence of stronger but irrelevant constituents. I present an approach to the latter two problems which relies on the Principal Components Analysis (PCA), a method based on eigen-structure analysis, by taking a time series approach and separating the seismicity rate patterns into a background component and components of change. I show a sample application to the Southern California area and discuss the promising results in view of their implications, potential applications and with respect to their possible precursory qualities.


Sign in / Sign up

Export Citation Format

Share Document