scholarly journals Molecular Identification and Sequence Analysis of Tobacco Leaf Curl Begomovirus from Jember, East Java, Indonesia

2008 ◽  
Vol 15 (1) ◽  
pp. 13-17
Author(s):  
SRI HENDRASTUTI HIDAYAT ◽  
ORAWAN CHATCHAWANKANPANICH ◽  
NOOR AIDAWATI
2021 ◽  
Vol 21 (2) ◽  
pp. 97-102
Author(s):  
Dewa Gede Wiryangga Selangga ◽  
Listihani Listihani

Molecular identification of Pepper yellow leaf curl Indonesia virus on chili pepper in Nusa Penida Island. Pepper yellow leaf curl Indonesia virus (PYLCV) has been reported as caused yellow leaf curl disease in Bali Island since early 2012. Dominant symptoms of PYLCV infection in chili pepper were yellowing, leaf curl, yellow mosaic, and mottle. Bemisia tabaci, has been known to vector on the case yellow leaf curl disease. Observations on the Nusa Penida Island in 2020 showed symptoms such as yellow leaf curl disease, however, identification of PYLCV in Nusa Penida Island has not been studied. Molecular identification was conducted using polymerase chain reaction and sequence analysis. Data collected in this study was disease symptoms and disease incidence. The results showed that dominant disease symptoms caused by virus from Nusa Penida were yellow mosaic, yellowing, and mottle. Universal DNA fragments of 912 bp were successfully amplified from 50 leaf samples using Begomovirus degenerate primers SPG 1 (5’-CCCCKGTGCGWRAATCCAT-3’) and SPG 2 (5’ATCCVAA YWTYCAGGGAGCT-3’). Sequence analysis showed that the isolate from Nusa Penida was a Pepper yellow leaf curl Indonesia virus with a 98–100% homology with several reference isolates.


2016 ◽  
Vol 13 (1) ◽  
Author(s):  
Chenchen Jing ◽  
Chunyan Wang ◽  
Ke Li ◽  
Gentu Wu ◽  
Xianchao Sun ◽  
...  

1967 ◽  
Vol 33 (5) ◽  
pp. 311-312
Author(s):  
Hikotoshi TSUMAGARI
Keyword(s):  

Author(s):  

Abstract A new distribution map is provided for Tobacco leaf curl virus Storey. Hosts: Tobacco (Nicotiana tabacum), and others. Information is given on the geographical distribution in AFRICA, Cameroon, Ghana, Malagasy, Republic Malawi, Mauritius, Morocco, Mozambique, Nigeria, Rhodesia, Sierra Leone, South Africa, Sudan, Tanzania, Uganda, Zaire, Zambia, ASIA, Burma, India (general with host), Indonesia (Java, Sumatra), Japan, Peninsular Malaysia, Pakistan, Philippines, Sri Lanka, Taiwan (Formosa), Thailand, USSR (Republic of Georgia, Central Asia Republics), AUSTRALASIA & OCEANIA, Australia (Northern Territories, Western Australia), Papua New Guinea, EUROPE, Denmark, Germany, Romania, Spain, Switzerland, USSR (Krasnodar), NORTH AMERICA, USA (Kentucky), CENTRAL AMERICA & WEST INDIES, Panama, Puerto Rico, SOUTH AMERICA, Colombia, Venezuela.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Victor Olusegun Oyetayo

Molecular identification of eighteenTermitomycesspecies collected from two states, Ondo and Ekiti in Nigeria was carried out using the internal transcribed spacer (ITS) region. The amplicons obtained from rDNA ofTermitomycesspecies were compared with existing sequences in the NCBI GenBank. The results of the ITS sequence analysis discriminated between all theTermitomycesspecies (obtained from Ondo and Ekiti States) andTermitomycessp. sequences obtained from NCBI GenBank. The degree of similarity of T1 to T18 to gene ofTermitomycessp. obtained from NCBI ranges between 82 and 99 percent.Termitomycesspecies from Garbon with ascension number AF321374 was the closest relative of T1 to T18 except T12 that has T. eurhizus and T. striatus as the closet relative. Phylogenetic tree generated with ITS sequences obtained from NCBI GenBank data revealed that T1 to T18 are more related toTermitomycesspecies indigenous to African countries such as Senegal, Congo, and Gabon.


2005 ◽  
Vol 95 (5) ◽  
pp. 549-555 ◽  
Author(s):  
C. M. Fauquet ◽  
S. Sawyer ◽  
A. M. Idris ◽  
J. K. Brown

Numerous whitefly-transmitted viral diseases of tomato have emerged in countries around the Nile and Mediterranean Basins the last 20 years. These diseases are caused by monopartite geminiviruses (family Gemini viridae) belonging to the genus Begomovirus that probably resulted from numerous recombination events. The molecular biodiversity of these viruses was investigated to better appreciate the role and importance of recombination and to better clarify the phylogenetic relationships and classification of these viruses. The analysis partitioned the tomato-infecting begomoviruses from this region into two major clades, Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus. Phylogenetic and pairwise analyses together with an evaluation for gene conversion were performed from which taxonomic classification and virus biodiversity conclusions were drawn. Six recombination hotspots and three homogeneous zones within the genome were identified among the tomatoinfecting isolates and species examined here, suggesting that the recombination events identified were not random occurrences.


Plant Disease ◽  
2015 ◽  
Vol 99 (5) ◽  
pp. 627-631 ◽  
Author(s):  
Ashish Srivastava ◽  
Susheel Kumar ◽  
Shri Krishna Raj

Ageratum houstonianum was introduced in India as an annual ornamental plant and is grown in beds for blue head flowers. Yellow vein net disease was observed on A. houstonianum plants with about 9.0% disease incidence during a survey in February 2012 at gardens of NBRI, Lucknow, India. Association of a begomovirus and betasatellite with the disease was characterized based on sequence analyses of their cloned full length genome isolated from diseased A. houstonianum. Sequence analysis of the begomovirus showed presence of the six open reading frames in its genome, similar to the arrangement of Old World begomoviruses. The begomoviral genome shared 95 to 97% sequence identities with various strains of Ageratum enation virus (AEV); however, it showed distinct phylogenetic relationships with them, and hence was identified as a variant of AEV based on more than 94% sequence homology, the criteria defined by ICTV. The sequence analysis of associated betasatellite revealed highest 93% sequence identity and close phylogenetic relationships with Ageratum leaf curl betasatellite (ALCB) molecules; therefore, it was identified as an isolate of ALCB (based on 93% sequence homology). Agroinfiltration of partial dimers of the AEV variant and ALCB induced similar systemic yellow vein net and leaf curl symptoms on A. houstonianum when infiltrated in combination, fulfilling Koch’s postulates. Characterization of AEV and ALCB causing yellow vein net disease of A. houstonianum is being reported for the first time.


Biotecnia ◽  
2017 ◽  
Vol 19 (3) ◽  
pp. 3-10
Author(s):  
Yolaine Delgado Gómez ◽  
Rodolfo Umaña Castro ◽  
Stefany Solano González ◽  
María V. Iglesias Rodríguez ◽  
Eudalys Ortiz Guilarte ◽  
...  

Light emitted by luminescent bacteria is sensitive to several toxic compounds; therefore, some luminous species have been used to evaluate the quality of water environments. In the present study we carried out the phenotypic characterization and molecular identification of a marine luminescent isolate (CBM-784) from the NW Cuban coast. The identification of the CBM-784 luminous isolate was based on phenotypic and genotypic characteristics. Phenotypically, the CBM-784 strain revealed the following characteristics: Gram negative, positive to oxidase and catalase reactions,bioluminescent, and facultative anaerobic respiration. The bacterial strain produces enzymes with gelatinase, lysine carboxylase and amylase activity. Taken together, these assays indicated that CBM-784 showed a high phenotypic similarity to the Vibrio harveyi ATCC 14126 strain. On the basis of 16S rRNA gene sequencing, CBM-784 was closely related to Vibrio harveyi and Vibrio rotiferianus (94% similarity). Sequence analysis of gyrB gene, has shown that CBM-784 shares taxonomic position with Vibrio campbellii and Vibrio harveyi isolates, with 95% of bootstrap value. In addition, sequence analysis of pyrH gene, grouped this isolate to the Vibrio harveyi cluster with a strong bootstrap support (99%). The multilocus sequence analysis and phenotypic characterization of CBM-784 indicated that this strain have a strong relation to Vibrio harveyi.


Sign in / Sign up

Export Citation Format

Share Document