Grain yield stability of new maize varieties in Nigeria

2001 ◽  
Vol 9 (4) ◽  
Author(s):  
B. A. Ogunbodede ◽  
S. R. Ajibade ◽  
S. A. Olakojo
Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2541
Author(s):  
Alfredo Nhantumbo ◽  
Sebastião Famba ◽  
Isaac Fandika ◽  
Armindo Cambule ◽  
Elijah Phiri

Maize is one of the most important staple food crops in Mozambique. Its production is country-wise dominated by smallholder farmers (more than 90%) under rain-fed conditions, where the risk of crop failure is high, especially under semi-arid conditions in southern Mozambique. Several maize genotypes have been developed for the broad agro-ecological zone adaptation but lack strong evidence about their productivity and yield stability to support decision-making in farming systems. In order to assess the yield and yield stability of maize genotypes under different environments, five identical on-station trials were implemented in the period 2017 to 2019, covering summer and winter seasons in the semi-arid region of southern Mozambique. The trials were established at the experimental station of the Universidade Eduardo Mondlane (UEM) in Sábie and at the Instituto de Investigação Agrária de Moçambique (IIAM) in Chókwe. A strip-plot design in a randomized complete block arrangement with 15 maize genotypes, and three water application (rainfall plus irrigation) levels in four replications was followed in a line-source irrigation arrangement. The water application levels varied from 151 mm to 804 mm, covering different water regimes. Under well-watered summer conditions, the genotypes G6 and G12 showed high yield and high grain yield stability. In the drier conditions, either in summer or winter, the G2 and G11 genotypes produced higher grain yield but with low stability. Both groups of genotypes have a high potential to be included in technology transfer packages to smallholder farmers to address food security or large-scale commercial farmers differently.


2020 ◽  
Vol 80 (03) ◽  
Author(s):  
K. Sumalini ◽  
T. Pradeep ◽  
D. Sravani

Interaction of homozygous inbreds and heterozygous single, three way and double crosses with environment had shown a differential response in achieving yield stability. Seven diverse maize inbreds, their 21 single crosses and 105 each of three way and double crosses obtained through diallel were evaluated for twelve characters across three diverse locations to estimate comparative stability of homozygous and heterozygous genotypes for grain yield. Contrasts in heterobeltiosis, combining ability and stability parameters in three environments and interaction effects were observed. Gain in heterobeltiosis (%) for grain yield was observed with decreased environmental quality in different hybrid classes suggesting that heterozygous hybrids are more stable due to individual buffering in single crosses and both individual and population buffering in case of three way and double crosses. Significant increase in SCA effects was observed in moderate environment at Hyderabad rather than at high yielding environment Palem. Significant G × E and Environment (linear) in all the crosses was observed for grain yield suggesting the effect of environment and its pre dominant effect on grain yield. Stability of hybrids was attributed to their superior performance over the parents in low yielding environment. Thus the potential use of selected heterozygous hybrids would allow under diverse environments is suggested to mitigate losses arising out of climate change.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Aloysius Beah ◽  
Alpha Y. Kamara ◽  
Jibrin M. Jibrin ◽  
Folorunso M. Akinseye ◽  
Abdullahi I. Tofa ◽  
...  

This paper assessed the application of the Agricultural Production Systems sIMulator (APSIM)–maize module as a decision support tool for optimizing nitrogen application to determine yield and net return of maize production under current agricultural practices in the Nigeria savannas. The model was calibrated for two maize varieties using data from field experiments conducted under optimum conditions in three locations during the 2017 and 2018 cropping seasons. The model was evaluated using an independent dataset from an experiment conducted under different nitrogen (N) levels in two locations within Southern and Northern Guinea savannas. The results show that model accurately predicted days to 50% anthesis and physiological maturity, leaf area index (LAI), grain yield and total dry matter (TDM) of both varieties with low RMSE and RMSEn (%) values within the range of acceptable statistics indices. Based on 31-year seasonal simulation, optimum mean grain yield of 3941 kg ha−1 for Abuja, and 4549 for Kano was simulated at N rate of 120 kg ha–1 for the early maturing variety 2009EVDT. Meanwhile in Zaria, optimum mean yield of 4173 kg ha–1 was simulated at N rate of 90 kg ha−1. For the intermediate maturing variety, IWDC2SYNF2 mean optimum yields of 5152, 5462, and 4849 kg ha−1, were simulated at N application of 120 kg ha−1 for all the locations. The probability of exceeding attainable mean grain yield of 3000 and 4000 kg ha−1 for 2009EVDT and IWDC2SYNF2, respectively would be expected in 95% of the years with application of 90 kg N ha−1 across the three sites. Following the profitability scenarios analysis, the realistic net incomes of US$ 536 ha–1 for Abuja, and US$ 657 ha−1 for Zaria were estimated at N rate of 90 kg ha−1 and at Kano site, realistic net income of US$ 720 ha–1was estimated at N rate of 120 kg ha−1 for 2009EVDT.For IWDC2SYNF2, realistic net incomes of US$ 870, 974, and 818 ha−1 were estimated at N application of 120 kg ha−1 for Abuja, Zaria, and Kano respectively. The result of this study suggests that 90 kg N ha−1 can be recommended for 2009EVDT and 120 kg N ha–1 for IWDC2SYNF2 in Abuja and Zaria while in Kano, 120 kg N ha−1 should be applied to both varieties to attain optimum yield and profit.


2017 ◽  
Vol 12 (1) ◽  
pp. 152-156 ◽  
Author(s):  
R. A. Graybosch ◽  
P. S. Baenziger ◽  
R. L. Bowden ◽  
F. Dowell ◽  
L. Dykes ◽  
...  

Author(s):  
Mamudu Njodi ◽  
Mohammed D. Toungos ◽  
Mu’azu Babayola ◽  
Hassan Kashim

Field experiment were conducted at Yola and Mubi locations to study the effects of increased plant population of five (5) varieties of maize Viz:  SAMMAZ 11, SAMMAZ  14, SAMMAZ 15, SAMMAZ 16, and SAMMAZ 17 on yield and yield component during the 2011 cropping season. The experimental design was a split plot design with maize varieties as the main plot treatments, while plant population, (53,333, 63,333, 80,000 and 106,666) as the sub-plot treatments. The treatment were replicated three (3) times. Characters measured included plant height, number of leaves per plant, number of days to 50% tasseling, number of day to 50 % silking, days to 95% maturity, number of ear per plant, stem diameter, length of ear, diameter of ear, number of grains per ear, 100 grain weight, number of grains per ear. Yield per plot and total grain yield per hectare. The result of the experiments showed that there was significant difference due to varietal effect in plant height at 3 WAS in Yola and at 7 WAS and 9 WAS in Mubi. Variety also affects days to 50% tasseling, days to 50% silking and days to 95% maturity at both locations. Variety also affects ear length at both locations. Interaction of variety and population affected harvest index in Mubi. Population significantly affected yield per plant, yield per plot, total grain yield per hectare in both locations. Combined analysis result showed highly significant effect due to location on plant height at 3 and 5 WAS and also due to variety. Location also affected number of leaves per plant significantly at 3WAS and highly significantly at 5, 7, 9 and 11 WAS. Varieties affected number of leaves per plant at 5 and 9 WAS and was highly significant at 11 WAS.  Location and varieties affected days to 50% tasseling, days to 50 % silking and days to 95% maturity, while population only affected days to 50% silking. Diameter of ear and harvest index was highly significant by location and on number of grains per row. Varieties also showed significant differences in length of ear. Location affected straw weight per plant, while varieties affected yield per plant and yield per plot, weight of 100 grain yield and total grain yield per hectare was also highly significantly affected. Population affected yield per plant, especially the ones in Yola. Straw weight, total grain yield and weight of 100 grain were significantly affected. SAMMAZ 15 which gave a plant population of 106,666 ha-1 is recommended at both locations.


2020 ◽  
Vol 21 (2) ◽  
pp. 543 ◽  
Author(s):  
Berhanu Tadesse Ertiro ◽  
Michael Olsen ◽  
Biswanath Das ◽  
Manje Gowda ◽  
Maryke Labuschagne

Understanding the genetic basis of maize grain yield and other traits under low-nitrogen (N) stressed environments could improve selection efficiency. In this study, five doubled haploid (DH) populations were evaluated under optimum and N-stressed conditions, during the main rainy season and off-season in Kenya and Rwanda, from 2014 to 2015. Identifying the genomic regions associated with grain yield (GY), anthesis date (AD), anthesis-silking interval (ASI), plant height (PH), ear height (EH), ear position (EPO), and leaf senescence (SEN) under optimum and N-stressed environments could facilitate the use of marker-assisted selection to develop N-use-efficient maize varieties. DH lines were genotyped with genotyping by sequencing. A total of 13, 43, 13, 25, 30, 21, and 10 QTL were identified for GY, AD ASI, PH, EH, EPO, and SEN, respectively. For GY, PH, EH, and SEN, the highest number of QTL was found under low-N environments. No common QTL between optimum and low-N stressed conditions were identified for GY and ASI. For secondary traits, there were some common QTL for optimum and low-N conditions. Most QTL conferring tolerance to N stress was on a different chromosome position under optimum conditions.


1977 ◽  
Vol 13 (3) ◽  
pp. 253-256 ◽  
Author(s):  
B. S. Dhillon ◽  
Joginder Singh

SUMMARYCombining ability analysis was carried out on diallel crosses of 20 yellow maize varieties in four environments. General combining ability variance (σ2g) was of greater importance than specific combining ability (σ2s) in the inheritance of all traits except grain yield and ear length, where the reverse was true. Interaction components (σ2ge, σ2se) were greater than the respective main components (σ2g, σ2s) for grain yield. The study brought out the prominent role of genotype-environmental interactions. Heritability in the broad sense was very high for all traits except grain yield and grain moisture, and narrow sense heritability was also high for all traits except grain yield and ear length.


Crop Science ◽  
1996 ◽  
Vol 36 (5) ◽  
pp. 1083-1087 ◽  
Author(s):  
M. Chisi ◽  
P. J. Bramel‐Cox ◽  
M. D. Witt ◽  
M. M. Claassen ◽  
D. J. Andrews

Sign in / Sign up

Export Citation Format

Share Document