scholarly journals Photodegradation of Rhodamine B using Cd-Al/C double layered hydroxide catalyst

2020 ◽  
Vol 12 (1) ◽  
pp. 24-30
Author(s):  
A.S. Muhammad ◽  
F.A. Garzali

This paper presents the degradation of Rhodamine B using cadmium aluminium carbon (Cd-Al/C) catalyst under visible light. The layered double hydroxide was successfully prepared from cadmium fluoride (CdF2), aluminium chloride (AlCl3), and rice husks activated carbon, and then characterized by X-ray Diffaraction (XRD) Scaning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) methods. The peaks at 2Ө 23.4 and 35.5 in the XRD result confirmed the presences of LDH. The effect of contact time, catalyst dosage, pH and initial concentration, on the photo degradiation of Rhodamine B were investigated. The experimental results showed that after 100min visible light irradiation, the percentage degradation using 200mg Cd-Al/C, pH 7 and 3ppm Rhodamine B concentration reached to 76.22%.  For kinetics studies the data obtained were analysed using pseudo first order and pseudo second order kinetic models. From the linear regression coefficient values the data were found to be best fitted to pseudo second order kinetics. The results revealed that the Cd-Al/C show good catalytic activity. Key words: Layered Double Hydroxide (LDH) Cadnium fluoride, Aluminium Chloride and Rhodamine B.

2021 ◽  
Author(s):  
Mohammad Dinari ◽  
Shirin Shabani

Abstract Herein, we report the synthesis of Cu-Ca-Al/NO3-based layered double hydroxide through co-precipitation methodology. The prepared layered double hydroxide was then modified with itaconic acid. The physicochemical properties of the prepared materials were studied using Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric analysis, and nitrogen adsorption/desorption technique. The prepared materials were then applied as novel adsorbents for the removal of Congo red as a model of an anionic dye from aqueous media. To reach maximum adsorption, the effect of parameters including sample solution pH, adsorbent amount, contact time, and initial concentration of Congo red on the adsorption process was investigated. Kinetic studies were also conducted to study the mechanism of adsorption. In this regard, the kinetic models of pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion were studied. The results showed that the adsorption of Congo red onto Cu-Ca-Al-LDH and LDH-ITA adsorbents followed the pseudo-second-order kinetic model. To evaluate the equilibrium adsorption data, different isotherms including Langmuir, Freundlich, and Dubinin-Radushkevich were also applied. The data revealed that the Freundlich isotherm provided the best fit with the equilibrium data of both adsorbents. Maximum adsorption capacities of 81 and 84 mg g− 1 were obtained using Cu-Ca-Al-LDH and LDH-ITA adsorbents, respectively.


2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2020 ◽  
Vol 9 (2) ◽  
pp. 383-391

A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement. The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻1, whereas the use of intercalated Mg/Cr LDH caused an increase in the capacity (139.526 mg g⁻1). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic model; the K2 values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg⁻1 min⁻1, respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of the dye and could be used as adsorbents with high adsorption capacity over three cycles.


2019 ◽  
Vol 814 ◽  
pp. 463-468 ◽  
Author(s):  
Hong Tham Nguyen Thi ◽  
Duy Chinh Nguyen ◽  
Thi Thuong Nguyen ◽  
Van Thuan Tran ◽  
Huu Vinh Nguyen ◽  
...  

This In this study, the Ca-Al layered double hydroxide was used as a potential adsorbent for the removal of Congo red from aqueous solutions. The effects of Initial concentration and contact time on the adsorption properties of Congo red by Ca-Al LDHs were studied. The removal rate of Conge red reached to 59.416 mg/g under room temperature with 0.2g of adsorbent, initial concentration of 50 ppm, adsorption time of 210 min, shaking speed of 90r/min. The experimental equilibrium data for the removal of Congo red were evaluated by various isotherm models. The pseudo-second-order kinetic models were found to fit the adsorption kinetics, and the equilibrium data were appropriately fitted to Langmuir and Freundlich model adsorption isotherm.


2020 ◽  
Vol 9 (1) ◽  
pp. 85-94

A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement. The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻1, whereas the use of intercalated Mg/Cr LDH caused an increase in the capacity (139.526 mg g⁻1). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic model; the K2 values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg⁻1 min⁻1, respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of the dye and could be used as adsorbents with high adsorption capacity over three cycles.


2017 ◽  
Vol 71 (5) ◽  
pp. 429-437 ◽  
Author(s):  
Ayawei Nimibofa ◽  
Ekubo Tobin ◽  
Shooto David ◽  
Wankasi Donbebe ◽  
Dikio Dixon

This study explored the adsorption capacity of Mg/Al layered double hydroxide (LDH) for the removal of Cu2+ from aqueous solutions after synthesis and characterization. The effect of various operational parameters such as concentration, temperature and sorption time on the adsorption of Cu2+ was investigated using batch adsorption process experiments. It was found that layered double hydroxide (LDH) can be used as adsorbent for the removal of copper ions in aqueous solution containing low concentration of the metal salt. The average values of activation energy, isosteric heat of adsorption, entropy and enthalpy were 1.447, 12.9, 0.0137 and ?4.8390 kJ/mol, respectively. This shows that the adsorption of the metal ion on the adsorbent follows a physical adsorption mechanism. The kinetic results conform to pseudo-second order model (R2 = 0.9959) and second order kinetic model (R2 = 0.9952) while the adsorption characteristics of the adsorbent followed both Langmuir and Freundlich adsorption isotherm models.


2020 ◽  
Vol 05 ◽  
Author(s):  
Diogo Pierre Alves Rodrigues ◽  
Meiry Glaucia Freire Rodrigues ◽  
Patrícia Fernandes Tomaz ◽  
Tellys Lins Almeida Barbosa

Background: Dye removal from effluents is one of the major problems faced in the world. It is a very important environmental issue and it is crucial to solve this problem. In this sense, ZIFs are increasingly important in the environmental area. Objective: This work presents the synthesis of metal-organic framework Zeolitic Imidazolate Framework-8 (ZIF-8) nanoparticles, characterization and then determine the potential to remove Rhodamine B (RhB) from an aqueous solution. Methods: ZIF-8 was synthesized under solvothermal treatment at 25 °C and it was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, infrared spectroscopy. To evaluate the capacity of the RhB, a pHinfluence and kinetic studies were determined. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. Results: ZIF-8 had average particle size 47 ± 4.6 nm. The removal percentage increases significantly when pH was in the range of 7.0–9.0. A pseudo-second-order kinetic of 13.00 mg/g was found for the RhB removal. The adsorption capacity at equilibrium was found to be 11.8 mg/g. Conclusion: According to the characterization results, the ZIF-8 synthesis was effective and produced a crystalline material. The ZIF-8 presented an affinity to the RhB dye. A pseudo-second order kinetic model represented well the mechanism of interaction involved during RhB adsorption and ZIF-8.


Author(s):  
Abderrahmane Elmelouky ◽  
Abdelhadi Mortadi ◽  
Elghaouti Chahid ◽  
Reddad Elmoznine

This chapter analyzes the experimental data using impedance spectroscopy to reduce water pollution by nitrate ions. The adsorption is through a synthesized layered double hydroxide (Zn3-Al-Cl-LDH). The kinetic study data analysis by pseudo-first-order and pseudo-second-order models is highly correlated they were found to fit very well the pseudo-second-order. This is confirmed by fast kinetic modeling of experimental data according to the pseudo-second-order. Furthermore, the Nyquist plots suggest that the grains and grain boundaries have contributed to the conduction mechanism of the material at different adsorption times and monitoring of the adsorption phenomenon. The investigation by impedance spectroscopy was used for modeling by an equivalent circuit. The real and imaginary functions of impedance complex are analyzed by modifying Cole-Cole relaxation. Revel most changes in the structure of the manifestation of the grains and the grains boundaries. The alternative current (AC) conductivity was investigated using the double power law of Jonscher. More importantly, the calculated value and the percentage of efficiency are evaluated in the adsorption. The water molecules and nitrate ions in the adsorbed were favored for the generation of the electrical response. The electrochemical impedance spectroscopy data are often interpreted by using electrical equivalent circuits.


2017 ◽  
Vol 19 (4) ◽  
pp. 65-74 ◽  
Author(s):  
Wojciech Konicki ◽  
Daniel Siber ◽  
Urszula Narkiewicz

Abstract Magnetic ZnFe2O4 nanocomposite (ZnFe-NC) was used as an adsorbent for the removal of Rhodamine B (RB) from aqueous solution. The synthesized nanocomposite was characterized by XRD, SEM, HRTEM, BET and FTIR. The effects of various parameters such as initial RB concentration (5–25 mg L−1), pH (3.4–11.1) and temperature (20–60°C) were investigated. The adsorption capacity at equilibrium increased from 5.02 to 9.83 mg g−1, with the increase in the initial concentration of RB from 5 to 25 mg L−1 at pH 7.0 and at 20°C. The experimental results indicated that the maximum RB removal could be attained at a solution pH of 4.4 and the adsorption capacity obtained was 6.02 mg g−1. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order model and the intraparticle diffusion model. The adsorption kinetics well fitted using a pseudo-second-order kinetic model. The experimental isotherm data were analyzed using two isotherm models, namely, Langmuir and Freundlich. The results revealed that the adsorption behavior of the RB onto ZnFe-NC fitted well with the Langmuir isotherm model. In addition, various thermodynamic parameters, such as standard Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) have been calculated.


Sign in / Sign up

Export Citation Format

Share Document