scholarly journals Determination of the Interior Orientation Parameters of a Non-metric Digital Camera for Terrestrial Photogrammetric Applications

2019 ◽  
Vol 19 (2) ◽  
pp. 1-9
Author(s):  
Naa Dedei Tagoe ◽  
S. Mantey

AbstractHigh cost of metric photogrammetric cameras has given rise to the utilisation of non-metric digital cameras to generate photogrammetric products in traditional close range or terrestrial photogrammetric applications. For precision photogrammetric applications, the internal metric characteristics of the camera, customarily known as the Interior Orientation Parameters, need to be determined and analysed. The derivation of these parameters is usually achieved by implementing a bundle adjustment with self-calibration procedure. The stability of the Interior Orientation Parameters is an issue in terms of accuracy in digital cameras since they are not built with photogrammetric applications in mind. This study utilised two photogrammetric software (i.e. Photo Modeler and Australis) to calibrate a non-metric digital camera to determine its Interior Orientation Parameters. The camera parameters were obtained using the two software and the Root Mean Square Errors (RMSE) calculated. It was observed that Australis gave a RMSE of 0.2435 and Photo Modeler gave 0.2335, implying that, the calibrated non-metric digital camera is suitable for high precision terrestrial photogrammetric projects. Keywords: Camera Calibration, Interior Orientation Parameters, Non-Metric Digital Camera

2012 ◽  
Vol 31 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Birutė Ruzgienė

During the last year amateur low‐cost digital cameras are increasingly expected to contribute to the digital photogrammetry. An important aspect of the suitability of these cameras is determination of their geometrical instability. In order to evaluate amateur digital camera performance, small format, low resolution and low-cost CCD camera have been investigated in two considerations: determining inner orientation parameters at different time and estimating accuracy in test field experiments. The calibration results demonstrate the poor stability of such a digital camera. As a result of the instability, amateur cameras have limited possibilities in close-range photogrammetry. However, the investigated camera under certain limited accuracy requirements can be used for low-accuracy photogrammetric application.


Author(s):  
D. D. Lichti ◽  
D. Jarron ◽  
M. Shahbazi ◽  
P. Helmholz ◽  
R. Radovanovic

Abstract. Chromatic aberration in colour digital camera imagery can affect the accuracy of photogrammetric reconstruction. Both longitudinal and transverse chromatic aberrations can be effectively modelled by making separate measurements in each of the blue, green and red colour bands and performing a specialized self-calibrating bundle adjustment. This paper presents the results of an investigation with two aims. The first aim is to quantify the presence of chromatic aberration in two sets of cameras: the six individual cameras comprising a Ladybug5 system, calibrated simultaneously in air; and four GoPro Hero 5 cameras calibrated independently under water. The second aim is to investigate the impacts of imposing different constraints in the self-calibration adjustment. To this end, four different adjustment cases were performed for all ten cameras: independent adjustment of the observations from each colour band; combined adjustment of all colour bands’ observations with common object points; combined adjustment of all colour bands with common object points and common exterior orientation parameters for each colour band triplet; and combined adjustment with common object points and certain common interior orientation parameters. The results show that the Ladybug5 cameras exhibit a small (1-2 pixel) amount of transverse chromatic aberration but no longitudinal chromatic aberration. The GoPro Hero 5 cameras exhibit significant (25 pixel) transverse chromatic aberration as well as longitudinal chromatic aberration. The principal distance was essentially independent of the adjustment case for the Ladybug5, but it was not for the GoPro Hero 5. The principal point position and precision were both affected considerably by adjustment case. Radial lens distortion was invariant to the adjustment case. The impact of adjustment case on decentring distortion was minimal in both cases.


2017 ◽  
Vol 43 (2) ◽  
pp. 66-72 ◽  
Author(s):  
Khalid L. A. EL-ASHMAWY

The present work tests the suitability of using the digital cameras of smart phones for close range photogrammetry applications. For this purpose two cameras of smart phones Lumia 535 and Lumia 950 XL were used. The resolutions of the two cameras are 5 and 20 Mpixels respectively. The tests consist of (a) self calibration of the two cameras, (b) the implementation of close-range photogrammetry using the cameras of the two smart phones, theodolite intersection with LST method, and linear variable displacement transducers (LVDTs) for the measurement of vertical deflections, and (c) accuracy of photogrammetric determination of object space coordinates. The results of using Lumia 950 XL are much better than using Lumia 535 and are better or comparable to the results of theodolite intersection with least squares technique (LST). Finally, it can be stated that the digital cameras of smart phones are suitable for close range photogrammetry applications according to accuracy, costs and flexibility.


2021 ◽  
Vol 47 (3) ◽  
pp. 111-117
Author(s):  
Szymon Sobura

The paper deals with the calibration of a non-metric digital camera Nikon EOS 6D with a 50 mm lens that could be adapted as a potential UAV sensor for the purposes of aerial inspections. The determination of the internal orientation parameters and the image errors of the non-metric digital camera involved self-calibration with Agisoft Metashape software solving the network of the images obtained from different test fields: a chessboard field, a professional laboratory field and a spatially diverse research area. The results of the control measurement for the examined object distance of 6 meters do not differ significantly. The RMSE from the control measurement for the second analyzed object distance of 15 meters was calculated on the basis of the internal orientation elements. The images from the laboratory field, the spatial test area and the chessboard field were used, and the obtained results amounted to 7.9, 9.9 and 11.5 mm, respectively. The conducted studies showed that in the case of very precise photogrammetric measurements performed by means of the Nikon EOS 6D camera equipped with a 50 mm lens, it is optimal to conduct calibration in a laboratory test field. The greatest RMSE errors were recorded for the control images with the elements of the internal camera orientation calculated on the basis of the chessboard area. The results of the experiments clearly show a relation between the accuracy of the Nikon EOS 6D camera calibrations and the percentage of the frame area filled with the test field. This explains why the weakest calibration results were obtained from the chessboard test field.


Author(s):  
A. R. Yusoff ◽  
M. F. M. Ariff ◽  
K. M. Idris ◽  
Z. Majid ◽  
A. K. Chong

Unmanned Aerial Vehicles (UAVs) can be used to acquire highly accurate data in deformation survey, whereby low-cost digital cameras are commonly used in the UAV mapping. Thus, camera calibration is considered important in obtaining high-accuracy UAV mapping using low-cost digital cameras. The main focus of this study was to calibrate the UAV camera at different camera distances and check the measurement accuracy. The scope of this study included camera calibration in the laboratory and on the field, and the UAV image mapping accuracy assessment used calibration parameters of different camera distances. The camera distances used for the image calibration acquisition and mapping accuracy assessment were 1.5 metres in the laboratory, and 15 and 25 metres on the field using a Sony NEX6 digital camera. A large calibration field and a portable calibration frame were used as the tools for the camera calibration and for checking the accuracy of the measurement at different camera distances. Bundle adjustment concept was applied in Australis software to perform the camera calibration and accuracy assessment. The results showed that the camera distance at 25 metres is the optimum object distance as this is the best accuracy obtained from the laboratory as well as outdoor mapping. In conclusion, the camera calibration at several camera distances should be applied to acquire better accuracy in mapping and the best camera parameter for the UAV image mapping should be selected for highly accurate mapping measurement.


2011 ◽  
Vol 110-116 ◽  
pp. 4337-4342
Author(s):  
Ying Dan Mao

With the progressive development of photogrammetric technology, the digital photogrammetric method based on the basic principles of digital imaging and photogrammetry has replaced the traditional photogrammetric mapping method and has been widely promoted and applied. In this paper, it studies further the issues about the image processing and photogrammetric algorithms of common digital cameras based on some research results in the traditional field of close-range photogrammetry, and verifies with actual examples the application of using digital cameras to implement the close-range photogrammetric method to engineering is feasible.


2015 ◽  
Vol 99 (1) ◽  
pp. 28-43 ◽  
Author(s):  
Marek Woźniak ◽  
Ewa Świerczyńska ◽  
Sławomir Jastrzębski

Abstract This paper analyzes selected aspects of the use of video-tacheometric technology for inventorying and documenting geometric features of objects. Data was collected with the use of the video-tacheometer Topcon Image Station IS-3 and the professional camera Canon EOS 5D Mark II. During the field work and the development of data the following experiments have been performed: multiple determination of the camera interior orientation parameters and distortion parameters of five lenses with different focal lengths, reflectorless measurements of profiles for the elevation and inventory of decorative surface wall of the building of Warsaw Ballet School. During the research the process of acquiring and integrating video-tacheometric data was analysed as well as the process of combining “point cloud” acquired by using video-tacheometer in the scanning process with independent photographs taken by a digital camera. On the basis of tests performed, utility of the use of video-tacheometric technology in geodetic surveys of geometrical features of buildings has been established.


2009 ◽  
Vol 4 (1) ◽  
pp. 11
Author(s):  
Abdullah S. Alsalman

This research work presents the results of an experiment concerned with a comparison of the performance of non-metric digital and non-metric film -based cameras for structural deformation surveys. An Olympus OM 10 non-metric camera and a Fujix DS-100 still image digital camera were used to measure the amount of deformation of a model of a light-weight building when under load. For the sake of consistency, the same photogrammetric network design, control configuration and self -calibrating bundle adjustment were used for data evaluation. The results of the research show that digital non-metric cameras are viable ,and possibly accurate , tools for structural deformation studies .Taking into account the obvious advantages of ease of operation , relatively low cost and computer –amenability , the author appeals to surveyors and civil engineers to consider digital cameras in their respective deformation survey studies and practices.


Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Faheem Akhtar Chachar

Background: Since the distribution networks are passive until Distributed Generation (DG) is not being installed into them, the stability issues occur in the distribution system after the integration of DG. Methods: In order to assure the simplicity during the calculations, many approximations have been proposed for finding the system’s parameters i.e. Voltage, active and reactive powers and load angle, more efficiently and accurately. This research presents an algorithm for finding the Norton’s equivalent model of distribution system with DG, considering from receiving end. Norton’s model of distribution system can be determined either from its complete configuration or through an algorithm using system’s voltage and current profiles. The algorithm involves the determination of derivative of apparent power against the current (dS/dIL) of the system. Results: This work also verifies the accuracy of proposed algorithm according to the relative variations in the phase angle of system’s impedance. This research also considers the varying states of distribution system due to switching in and out of DG and therefore Norton’s model needs to be updated accordingly. Conclusion: The efficacy of the proposed algorithm is verified through MATLAB simulation results under two scenarios, (i) normal condition and (ii) faulty condition. During normal condition, the stability factor near to 1 and change in dS/dIL was near to 0 while during fault condition, the stability factor was higher than 1 and the value of dS/dIL was away from 0.


Sign in / Sign up

Export Citation Format

Share Document