scholarly journals Weld metal characterization of 316L(N) austenitic stainless steel by electron beam welding process

Author(s):  
B Joseph ◽  
D Katherasan ◽  
P Sathiya ◽  
CVS Murthy
2013 ◽  
Vol 446-447 ◽  
pp. 288-290
Author(s):  
Pornpibunsompop Tosapolporn

The precipitation characterization of SUS 310S weld metal was investigated by TG/DSC and metallography technique. SMAW was selected for this study and then cut with water jet avoiding thermal effect. Austenitic is the main microstructure of weld metal because of high Creqv./Nieqv. Precipitation launched higher both %mass change and heat consumed as well as the precipitation temperature was around 800 degree Celsius.


2015 ◽  
Vol 1088 ◽  
pp. 130-134
Author(s):  
Ya Rong Wang ◽  
Yang Yu ◽  
Wei Chao Zhang

The high vacuum electron beam welding-brazing was used to joining vanadium alloy (V-5Cr-5Ti) with stainless–steel (HR-2). The temperature fields and stress distributions in the V-5Cr-5Ti/HR-2 joint during the welding process were numerically simulated and the effect of the electron beam off-set distance was studied. The results show that the accurate heat input and proper molten pool position can help to control the fusion ratio of the V/Fe. The electron beam should off set on the stainless steel side rather than vanadium alloy side, and the best range of the distances off-set is 0-0.5mm. The residual stress appears to be bimodal and asymmetric. The maximum lateral residual tensile stress reached 388MPa at the V-5Cr-5Ti side. The joints with the characters of welding and brazing and the metallurgically bonded joint was achieved with 0.3mm beam off-set. With the liquid-to-solid interalloying of dissimilar materials controlled well, a reaction zone is gained on the interface. The maximum tensile strength of vanadium alloy/stainless-steel dissimilar alloy jointswas up to 200MPa with no defect.


Author(s):  
Ajay Sharma ◽  
Vineet Prabhakar ◽  
Sandeep Singh Sandhu

The Electron Beam welding (EBW) process was employed to fabricate 18 mm thick fully penetrated butt welds of AISI 321 stainless steel. Nail shaped weld wide at the top and narrow at the bottom was obtained. Characterization of the weld joint was carried out using optical microscopy, scan electron microscopy, X-ray diffraction, microhardness, impact toughness test and tensile strength test. The microstructure of the weld metal was found to be free from defects like cracks porosity etc. The weld metal consisted of the primarily austenitic matrix with skeletal and vermicular morphology of δ-ferrite by the side of the grain boundaries. Carbides of Cr and Ti were found in the weld metal after the thermal aging treatment of 750°C for 24 hours as reveled by the XRD analysis. The tensile strength study revealed a maximum strength of 575 MPa at the root of the weld joint in the as-welded state. The maximum impact toughness of 129.3 J was obtained in the top section of the weld in the as-welded condition. The results in terms of structure-property correlaterelationship. This study recommends the effectiveness of EBW for joining 18 mm thick AISI 321.


2012 ◽  
Vol 557-559 ◽  
pp. 1268-1274 ◽  
Author(s):  
Andrés L. García Fuentes ◽  
Pierre Bazán ◽  
Leiry Centeno ◽  
Magaly Ramos ◽  
Alberto Velázquez Del Rosario

The research shows the characterization of mechanical properties in dissimilar steel welded unions: a structural steel ASTM A537 (I) overlap welded with an austenitic stainless steel ASTM A240 (304L) through semiautomatic electrical arc welding process protected by inert gas (GMAW); Argon is used as a protecting gas and austenitic stainless steel ASTM A240 (308L) as a supplier material. Samples were tested in not welded conditions so as to characterize the materials involved in the research, and they were also tested in welded conditions, not being submitted to pre and post welding Thermal Treatment (TT). Welded-based material samples were characterized through Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), an inspection of Not Destructive Test (NDT) with penetrating liquids and ultrasound was also conducted. The following mechanical tests were completed, not only on the Base Metals (BM), on the Welding Join (WJ) as well: Vickers micro hardness profile, tension, and face bending test. Results showed a proper mechanical steel behavior, welded by GMAW procedure, under monotonic, in spite of the relatively high values of microhardness in the Heat Affected Zone (HAZ), specifically near the fusion line between weld and stainless steel.


10.30544/545 ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 279-292
Author(s):  
Akash Doomra ◽  
Sandeep Singh Sandhu ◽  
Beant Singh

The applicability of ferritic stainless steel is restricted due to its low weldability, and this can be attributed to the severe grain growth in the weld zone during the solidification of the weld pool and formation of fully ferritic structure. This study aims to investigate the weldability of 18 mm thick AISI 409 ferritic stainless steel plates using an electron beam welding process without the use of filler metal. The joints were investigated for metallography characterization (microstructure, macrostructure, and microhardness) and mechanical behavior (tensile strength and impact toughness) in as-welded condition and after post-weld heat treatment at 550 ºC for 75 minutes. The weld zone exhibited large columnar grains in the direction perpendicular to the weld centerline and got refined after post-weld heat treatment. The ultimate tensile strength, yield strength, and microhardness of the weld zone were found higher than the base metal. The impact toughness of weld zone was found to be reduced by 45%, but the post-weld heat treatment improved the toughness by 40%. Results revealed that the electron beam welding process could be successfully employed for welding of AISI 409 ferritic stainless steel, which will increase its application range that requires thicker section of welded plates. Post-weld heat treatment was found to be advantageous for improving the microstructure and mechanical properties.


2014 ◽  
Author(s):  
J Elmer ◽  
G Ellsworth ◽  
J Florando ◽  
D Hiromoto ◽  
C Evans ◽  
...  

2012 ◽  
Author(s):  
J Elmer ◽  
D Hiromoto ◽  
C Evans ◽  
J Florando ◽  
I Golosker

Author(s):  
Mária Dománková ◽  
Marek Adamech ◽  
Jana Petzová ◽  
Katarína Bártová ◽  
Peter Pinke

Abstract Borated austenitic stainless steel is used in nuclear industry due to the high neutron absorption efficiency. The plasma, laser and electron beam welding experiments were used for the study of the weld joints microstructure. The microstructure changes caused by welding process were observed by light optical microscopy and transmission electron microscopy. The microstructural characterization and microchemical analysis showed significant changes of the phase composition in the weld metal mainly. The austenitic dendrites were surrounded by eutectics, which were the mixture of the M2(C,B) and M23(C,B) borocarbides, δ-ferrite and austenite.


Sign in / Sign up

Export Citation Format

Share Document