scholarly journals Potential of Shallow Groundwater for Household Level Irrigation Practices in Tahtay Koraro Woreda, Tigray, Northern Ethiopia

2021 ◽  
Vol 13 (1) ◽  
pp. 43-66
Author(s):  
Ermias Hagos ◽  
Amare Girmay ◽  
Tesfamichael Gebreyohannes

This paper deals with the results of a pilot study conducted to estimate the shallow groundwater resource potential and irrigation capacity at the household level in Tahtay Koraro Woreda, northwestern zone of Tigray, Ethiopia. The potential evapotranspiration and actual evapotranspiration of the study area are estimated to be 1484 mm/year and 814 mm/year respectively. The runoff is approximately calculated to be 280 mm/year and the annual groundwater recharge is estimated to be 29 mm/year. The total annual groundwater abstraction for human, livestock, and irrigation is estimated to be 25 mm/year. It should be noted that the groundwater recharge rate is expected to remain constant while the total annual groundwater discharge is expected to increase from year to year. This relation when projected over a long period may result in a negative groundwater budget which can result in depletion of groundwater (lowering of groundwater levels), reduced baseflow to streams, and deterioration of water quality.  The computed values for hydraulic conductivity of the aquifers range from 1.63 m/day to 7.27 m/day with an average value of 4.9 m/day and transmissivity from 48.9 m2/day to 218.1 m2/day with an average value of 147.14 m2/day. The aquifers in the highly weathered basalt and highly weathered siltstone – sandstone intercalation have transmissivity values ranging from 99 m2/day to 218.1 m2/day with an average value of 157 m2/day and are grouped into the moderate potentiality aquifers category. The aquifers in the slightly weathered and fractured metavolcanics grouped under low potentiality based on the lower transmissivity values (<50 m2/day). The study area has low to moderate groundwater potentiality, hence, large-scale groundwater pumping is not possible. Therefore, the current activity of using hand dug wells for household-level irrigation is the best way of using groundwater for irrigation and other uses as well. Increasing the depth of the existing hand dug wells that are constructed in highly weathered basalt and highly weathered siltstone – sandstone intercalation can also enhance the yield of the hand dug wells. It is recommended to use water-saving irrigation technologies rather than increasing the number of wells. This will also help in increasing the irrigation area. Groundwater recharge enhancement structures such as trenches, percolation ponds, and check dams be constructed in scientifically selected localities to further enhance the groundwater potential.

2020 ◽  
Vol 28 (8) ◽  
pp. 2917-2932
Author(s):  
Sara Nowreen ◽  
R. G. Taylor ◽  
M. Shamsudduha ◽  
M. Salehin ◽  
A. Zahid ◽  
...  

AbstractGroundwater is used intensively in Asian mega-deltas yet the processes by which groundwater is replenished in these deltaic systems remain inadequately understood. Drawing insight from hourly monitoring of groundwater levels and rainfall in two contrasting settings, comprising permeable surficial deposits of Holocene age and Plio-Pleistocene terrace deposits, together with longer-term, lower-frequency records of groundwater levels, river stage, and rainfall from the Bengal Basin, conceptual models of recharge processes in these two depositional environments are developed. The representivity of these conceptual models across the Bengal Basin in Bangladesh is explored by way of statistical cluster analysis of groundwater-level time series data. Observational records reveal that both diffuse and focused recharge processes occur in Holocene deposits, whereas recharge in Plio-Pleistocene deposits is dominated by indirect leakage from river channels where incision has enabled a direct hydraulic connection between river channels and the Plio-Pleistocene aquifer underlying surficial clays. Seasonal cycles of recharge and discharge including the onset of dry-season groundwater-fed irrigation are well characterised by compiled observational records. Groundwater depletion, evident from declining groundwater levels with a diminished seasonality, is pronounced in Plio-Pleistocene environments where direct recharge is inhibited by the surficial clays. In contrast, intensive shallow groundwater abstraction in Holocene environments can enhance direct and indirect recharge via a more permeable surface geology. The vital contributions of indirect recharge of shallow groundwater identified in both depositional settings in the Bengal Basin highlight the critical limitation of using models that exclude this process in the estimation of groundwater recharge in Asian mega-deltas.


2017 ◽  
Author(s):  
Chinchu Mohan ◽  
Andrew W. Western ◽  
Yongping Wei ◽  
Margarita Saft

Abstract. Groundwater recharge is one of the important factors determining the groundwater development potential of an area. Even though recharge plays a key role in controlling groundwater system dynamics, much uncertainty remains regarding the relationships between groundwater recharge and its governing factors at a large scale. The aims of this study were to identify the most influential factors on groundwater recharge, and to develop an empirical model to estimate diffuse rainfall recharge at a global-scale. Recharge estimates reported in the literature from various parts of the world (715 sites) were compiled and used in model building and testing exercises. Unlike conventional recharge estimates from water balance, this study used a multimodel inference approach and information theory to explain the relation between groundwater recharge and influential factors, and to predict groundwater recharge at 0.50 resolution. The results show that meteorological factors (precipitation and potential evapotranspiration) and vegetation factors (land use and land cover) had the most predictive power for recharge. According to the model, long term global average annual recharge (1981–2014) was 134 mm/yr with a prediction error ranging from −8 mm/yr to 10 mm/yr for 97.2 % of cases. The recharge estimates presented in this study are unique and more reliable than the existing global groundwater recharge estimates because of the extensive validation carried out using both independent local estimates collated from the literature and national statistics from Food and Agriculture Organisation (FAO). In a water scarce future driven by increased anthropogenic development, the results from this study will aid in making informed decision about groundwater potential at a large scale.


Author(s):  
Robyn Horan ◽  
Nathan J. Rickards ◽  
Alexandra Kaelin ◽  
Helen E. Baron ◽  
Thomas Thomas ◽  
...  

A robust hydrological assessment is challenging in regions where human interference, within all aspects of the hydrological system, significantly alters the flow regime of rivers. The challenge was to extend a large-scale water resources model, GWAVA, to better represent water resources without increasing the model complexity. A groundwater and a regulated reservoir routine were incorporated into GWAVA using modifications of the existing AMBHAS-1D and Hanasaki methodologies, respectively. The groundwater routine can be varied in complexity when sufficient input data is available but fundamentally is driven by three input parameters. The reservoir routine was extended to account for the presence of large, regulated reservoirs using two calibratable parameters. The additional groundwater processes and reservoir regulation was tested in two highly anthropogenically influenced basins in India: the Cauvery and Narmada. The inclusion of the revised groundwater routine improved the simulation of streamflow in the headwater catchments and was successful in improving the representation of the baseflow component. In addition, the model was able to produce a time series of daily groundwater levels, recharge to groundwater and groundwater abstraction. The regulated reservoir routine improved the simulation of streamflow in catchments downstream of major reservoirs, where the streamflow was largely reflective of reservoir releases, when calibrated using downstream observed streamflow records. The model was able to provide a more robust representation of the annual volume and daily outflow released from the major reservoirs and simulate the major reservoir storages adequately. The addition of one-dimensional groundwater processes and a regulated reservoir routine proved successful in improving the model performance and traceability of water balance components, without excessively increasing the model complexity and input data requirements.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Robertson Valério de Paiva Fontes Júnior ◽  
Abelardo Antônio de Assunção Montenegro

ABSTRACT Rainfall uncertainty and high evapotranspiration rates in the semiarid regions not only play an important impact on surface water scarcity, but interfere on shallow groundwater quantity and quality. The aim of this study was to apply geostatistical methodology to analyze the time dependence of potentiometric levels and groundwater salinity in an intensively monitored alluvial aquifer upon agroclimatological variables, and thus investigate possible monthly and annual correlations. Statistically stable piezometers were considered for the temporal analysis, representing the mean behavior of the whole aquifer. It has been verified that stable piezometers for groundwater levels exhibited temporal dependence of 7 months, similar to the temporal scale of variation for monthly precipitation and potential evapotranspiration, which is consistent to the resulting crossed-semivariogram. Meanwhile, stable piezometers for electrical conductivity showed high uncertainty on temporal dependence scale, which ranged from 3 to 8 months. Thus, rainfall and evapotranspiration alone did not properly explain the temporal dynamics of groundwater salinity. The produced maps successfully identified the long term time pattern of groundwater variation, constituting an important support for water resources evaluation.


2018 ◽  
Vol 22 (5) ◽  
pp. 2689-2703 ◽  
Author(s):  
Chinchu Mohan ◽  
Andrew W. Western ◽  
Yongping Wei ◽  
Margarita Saft

Abstract. Groundwater recharge is one of the important factors determining the groundwater development potential of an area. Even though recharge plays a key role in controlling groundwater system dynamics, much uncertainty remains regarding the relationships between groundwater recharge and its governing factors at a large scale. Therefore, this study aims to identify the most influential factors of groundwater recharge, and to develop an empirical model to estimate diffuse rainfall recharge at a global scale. Recharge estimates reported in the literature from various parts of the world (715 sites) were compiled and used in model building and testing exercises. Unlike conventional recharge estimates from water balance, this study used a multimodel inference approach and information theory to explain the relationship between groundwater recharge and influential factors, and to predict groundwater recharge at 0.5∘ resolution. The results show that meteorological factors (precipitation and potential evapotranspiration) and vegetation factors (land use and land cover) had the most predictive power for recharge. According to the model, long-term global average annual recharge (1981–2014) was 134 mm yr−1 with a prediction error ranging from −8 to 10 mm yr−1 for 97.2 % of cases. The recharge estimates presented in this study are unique and more reliable than the existing global groundwater recharge estimates because of the extensive validation carried out using both independent local estimates collated from the literature and national statistics from the Food and Agriculture Organization (FAO). In a water-scarce future driven by increased anthropogenic development, the results from this study will aid in making informed decisions about groundwater potential at a large scale.


2011 ◽  
Vol 8 (6) ◽  
pp. 10053-10093
Author(s):  
W. A. Timms ◽  
R. R. Young ◽  
N. Huth

Abstract. The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall), such as parts of Australia's Murray-Darling Basin (MDB). In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥10 m depth that is not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m−1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditionsafter changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 478
Author(s):  
Jan-Philip Witte ◽  
Willem Zaadnoordijk ◽  
Jan Buyse

Since the nineteen fifties, groundwater levels in the Netherlands dropped more than as simulated by hydrological models. In the rural sandy part of the Netherlands, the difference amounts to approximately 0.3 m on average. The answer to the question of what or who caused this ‘background decline’ of groundwater tables may have juridical and financial consequences, especially since Dutch farmers are entitled to financial compensation for crop damage caused by groundwater abstractions. In our forensic study, we investigated how anthropogenic changes in groundwater recharge from 1950 to 2010 affected groundwater levels. In this period, crop yields in agriculture have risen sharply, and, because crop water use is proportionate to crop production, this led to more crop evapotranspiration and subsequently less groundwater recharge. Urban expansion and forestation has also led to a decrease in groundwater recharge. We showed that these changes in recharge may have caused a decline of groundwater of 0.2–0.3 m over 60 years (1950–2010). The simulated drawdown caused by groundwater abstractions appeared to depend on the amount of groundwater recharge related to land use and crop yield. This means that to properly evaluate the effects of a particular groundwater abstraction, one should account for the hydrological history of the landscape since the start of that abstraction.


2012 ◽  
Vol 16 (4) ◽  
pp. 1203-1219 ◽  
Author(s):  
W. A. Timms ◽  
R. R. Young ◽  
N. Huth

Abstract. The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall, potential evapotranspiration >2000 mm yr−1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m−1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.


1995 ◽  
Vol 26 (4-5) ◽  
pp. 313-330 ◽  
Author(s):  
Klas Sandström

A conceptual model of the effects of rainfall variability on groundwater recharge was developed and applied to a small forested catchment in semi-arid Tanzania. The model simulated dual-domain recharge through the soil matrix and macropores, and was based on daily values of rainfall and potential evapotranspiration. Three different land-cover conditions (forested-nondegraded, deforested-nondegraded, and deforested-degraded) were included in the study in order to simulate the large-scale deforestation and land degradation process now occurring in Tanzania. In addition, the alternative land covers were also considered in combination with three different rainfall regimes. The results indicate the importance of macropore flow, particularly during dry years. The lack of macropores under deforested-degraded conditions reduces the simulated groundwater recharge to such an extent that it is less than under forested conditions. Simulating a climate change scenario shows that a small change in rainfall (-15%) can cause a large change in recharge (-45%).


Author(s):  
D. H. Sánchez ◽  
C. J. Navarro-Gómez ◽  
M. Rentería ◽  
J. F. Rose ◽  
J. R. Sánchez-Navarro

Abstract Groundwater is the main source of water in arid cities where precipitations are low and not evenly distributed. The combined impact of climate variability and intensive human activities has caused a substantial decline in groundwater levels. Understanding the response of groundwater levels to meteorological and anthropogenic factors is a key step to propose water management alternatives. Meteorological and groundwater data were used to design a multi-step approach to assess the influential factors on the groundwater system in the City of Chihuahua, Mexico. The analysis of historical groundwater levels and climate showed a clear increase in meteorological drought, as well as a groundwater abstraction trend since 1986. Rainfall, groundwater recharge, and groundwater level displayed a significant decrease. Overall, the groundwater depth is continuously increasing with a strong correlation with groundwater abstraction. Despite having a significant trend, the changes in land-cover, groundwater recharge, and meteorological drought were not the main factors inducing the decreased level of water in the aquifer. The continuous abstraction of groundwater from 1986 to 2010 has led to a depletion of groundwater levels from 32 to 92 m. The findings of this study lay a foundation for future water resource management in the study area.


Sign in / Sign up

Export Citation Format

Share Document