scholarly journals COMPARATIVE STUDY OF BS 8110 AND EUROCODE 2 IN STRUCTURAL DESIGN AND ANALYSIS

2017 ◽  
Vol 36 (3) ◽  
pp. 758-766
Author(s):  
CU Nwoji ◽  
AI Ugwu

This work was undertaken to compare the use of BS 8110 and Eurocode 2 in the design of structures and focused on outlining the relative gains and/or shortcomings of Eurocode 2 and BS 8110 under certain criteria which are loading, analysis, ease of use and technological advancement. To accomplish this, the analysis and design of the main structural elements in reinforced concrete building was undertaken using the two codes. A modest medium rise building was loaded using the two code and analyzed. Analysis was done using CSI start tedds to obtain the shear force and bending moment envelopes. For the beam, it was found that Eurocode 2 gave higher internal supports moments. For the case of maximum span moments and shear force values, the Euroode 2 values lagged behind. Column load and moments values were generally lower for Euroode 2. In summary, the comparative benefits of using Euroode 2 are that it is logical and organized, less restrictive and more extensive than the BS 8110. The new Eurocodes are claimed to be the most technically advanced code in the world and therefore should be adopted by Nigerian engineers. http://dx.doi.org/10.4314/njt.v36i3.14

2021 ◽  
Vol 1197 (1) ◽  
pp. 012086
Author(s):  
V Vishnu Sai ◽  
P Poluraju ◽  
B Venkat Rao

Abstract Technological advancements have greatly aided in improving quality of life through variety of new products and services. Pre Engineered Building (PEB) is among such technological advancement in the structural engineering. PEB concept provides optimum design, good aesthetic view, fast rate of construction and reduction in erection time. PEB satisfies a broad range of custom design needs and applications. This methodology is adaptable not only because of its high quality pre-designing and prefabrication, but also of its flexibility. In the current study, the comparison has been made on the structural performance of multiple bay system with different wind zones [Locations: Vijayawada and Hyderabad]. Analysis and design have been carried out using STAAD.Pro software. The structural performance of pre-engineered building has been assessed through the shear force (SF) and bending moment (BM) magnitudes. Based on the output of SF and BM of pre-engineered components through Staad. Pro analysis, the geometrical properties of pre-engineered sections have been decided. Results concludes structure weight located in Vijayawada is 11.04% higher than that of the structure in Hyderabad.


Author(s):  
L. S. Kalaiselvan

A bridge is a combination of substructure and superstructure that is built over a river, road, or railway to allow people and vehicles to cross from one side to the other. This paper describes about the analysis and design of box girder balanced cantilever bridge using MIDAS CIVIL by IRC loadings, characterized by central span of 130m with two symmetrical sides of 85m.Bridge deck is supported by two piers of 40m height from ground level. The bridge structure has been modelled using MIDAS CIVIL and analysis has been performed to get various output such as bending moment, shear force and time dependent properties such as creep and shrinkage at various points of the bridge. The PSC (prestressed) design of superstructure is performed as per IRC standards to get the output parameters such as principle stresses at construction stage, principle stress for prestressing tendon. While by using balanced cantilever bridge less form work has been required for this type of bridge.


2021 ◽  
Vol 1197 (1) ◽  
pp. 012068
Author(s):  
Shubham S. Hande ◽  
Sharda P. Siddh ◽  
Prashant D. Hiwase

Abstract Pre-stressed concrete bridge analysis is completely dependent on the standards and design criteria. Herein, the current study compares like a pre-stressed concrete bridge under the effect of two different loading standards and specifications. The two different loading standards considered herein are IRC 6: 2000 and AASHTO-LRFD standards. Further, the pre-stressed box girder bridge is modelled and analysis in MIDAS CIVIL. On carrying out analysis, the primary structural analysis parameters which are important for the design of structure, are studied. These parameters are shear force, bending moment and torsion in the bridge elements along its length. It became observed that AASHTO standards are uneconomical than IRC standards, due to consideration of heavy weight vehicle load moving on the bridge span. Thus, it might be said that pre-stressed box girder bridge analysis and design should be carried out effectively and optimistically using IRC standards and specifications.


2021 ◽  
Vol 304 ◽  
pp. 02006
Author(s):  
Priyanka Singh ◽  
Mirza Jahangir Baig ◽  
Bhumika Pandey ◽  
Kartik Papreja

Cable stayed bridges are known for their good stability, It has been the most favorable use of structural design, for comparatively low designing and maintenance costs, and for effective structural characteristics. Therefore, this type of bridges are gaining popularity and are generally selected for long spans when compared to suspension bridges. A cable stayed bridge comprises of pylons with cables withstanding the weight of deck. There are different types of pylons i.e. ; H-type pylon, A-type pylon, inverted Y-type pylon, and diamond shaped pylon. In this paper the bridge design, model, and analyses for these different types of pylons is done using STAAD Pro. The comparison for three cases are done on the basis of shear force and bending moment in terms of self weight to obtain the most efficient type of pylon design. The results thus obtained are useful in limiting the drawbacks of other types of pylon.


1996 ◽  
Vol 35 (01) ◽  
pp. 52-58 ◽  
Author(s):  
A. Mavromatis ◽  
N. Maglaveras ◽  
A. Tsikotis ◽  
G. Pangalos ◽  
V. Ambrosiadou ◽  
...  

AbstractAn object-oriented medical database management system is presented for a typical cardiologic center, facilitating epidemiological trials. Object-oriented analysis and design were used for the system design, offering advantages for the integrity and extendibility of medical information systems. The system was developed using object-oriented design and programming methodology, the C++ language and the Borland Paradox Relational Data Base Management System on an MS-Windows NT environment. Particular attention was paid to system compatibility, portability, the ease of use, and the suitable design of the patient record so as to support the decisions of medical personnel in cardiovascular centers. The system was designed to accept complex, heterogeneous, distributed data in various formats and from different kinds of examinations such as Holter, Doppler and electrocardiography.


2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3438
Author(s):  
Michał Szczecina ◽  
Andrzej Winnicki

This paper discusses a choice of the most rational reinforcement details for frame corners subjected to opening bending moment. Frame corners formed from elements of both the same and different cross section heights are considered. The case of corners formed of elements of different cross section is not considered in Eurocode 2 and is very rarely described in handbooks. Several reinforcement details with both the same and different cross section heights are presented. The authors introduce a new reinforcement detail for the different cross section heights. The considered details are comprised of the primary reinforcement in the form of straight bars and loops and the additional reinforcement in the form of diagonal bars or stirrups or a combination of both diagonal stirrups and bars. Two methods of static analysis, strut-and-tie method (S&T) and finite element method (FEM), are used in the research. FEM calculations are performed with Abaqus software using the Concrete Damaged Plasticity model (CDP) for concrete and the classical metal plasticity model for reinforcing steel. The crucial CDP parameters, relaxation time and dilatation angle, were calibrated in numerical tests in Abaqus. The analysis of results from the S&T and FE methods allowed for the determination of the most rational reinforcement details.


Sign in / Sign up

Export Citation Format

Share Document