scholarly journals Rational Choice of Reinforcement of Reinforced Concrete Frame Corners Subjected to Opening Bending Moment

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3438
Author(s):  
Michał Szczecina ◽  
Andrzej Winnicki

This paper discusses a choice of the most rational reinforcement details for frame corners subjected to opening bending moment. Frame corners formed from elements of both the same and different cross section heights are considered. The case of corners formed of elements of different cross section is not considered in Eurocode 2 and is very rarely described in handbooks. Several reinforcement details with both the same and different cross section heights are presented. The authors introduce a new reinforcement detail for the different cross section heights. The considered details are comprised of the primary reinforcement in the form of straight bars and loops and the additional reinforcement in the form of diagonal bars or stirrups or a combination of both diagonal stirrups and bars. Two methods of static analysis, strut-and-tie method (S&T) and finite element method (FEM), are used in the research. FEM calculations are performed with Abaqus software using the Concrete Damaged Plasticity model (CDP) for concrete and the classical metal plasticity model for reinforcing steel. The crucial CDP parameters, relaxation time and dilatation angle, were calibrated in numerical tests in Abaqus. The analysis of results from the S&T and FE methods allowed for the determination of the most rational reinforcement details.

2008 ◽  
Vol 6 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Marina Mijalkovic ◽  
Marina Trajkovic ◽  
Bojan Milosevic

The problem of the determination of limit bearing capacity of beam cross section under pure bending, eccentric tension, pure shear, as well as combined stress is considered in this paper. The influence functions of the bending moment and axial force, as well as the bending moment, axial and shear force on the cross section limit bearing capacity in case of rectangular and I beam cross section are derived.


Author(s):  
Florin Ţepeş Onea ◽  
Marian Dragomir

Abstract The theme of the paper is to design the capacity of a P + 6E construction with reinforced concrete frame structure and determination of the basic force-displacement on the top. Drawing the cutting force - the displacement at the top requires a non-linear bias of the pushover type. The non-linear static calculation is used in the displacement-based design methodology, in which lateral displacements are considered the main parameter for characterizing the seismic response of the structures.


2020 ◽  
Vol 23 (12) ◽  
pp. 2724-2740
Author(s):  
Quy Thue Nguyen ◽  
Ramazan Livaoğlu

Failure in a structural system can appear because of different types of pathologies and can cause a large number of problems during seismic action. Among these pathologies are design and execution flaws, underestimation of the required capacity of cross-section or seismic demand, and use of low quality of materials. The jacketing technique for a frame element is the most common use strengthening method in the practice to remove such disadvantages in a structural system. Then, the shear stress transferability at the concrete-to-concrete interface surface is the main objective. Shear connectors application is a solution for that consideration, but the investigation in the literature focusing this point is not adequate. The effect of the ratio of steel shear connectors on the interfaces of a reinforced concrete frame constructed using reinforced concrete formworks on its flexural behavior is numerically evaluated. Initially, the same ratio of Π-shaped and Λ-shaped shear connectors, 0.312%, is applied to determine the more effective shape. It should be clear that the ratio of shear connectors on any separate surface is calculated as the fraction of the total area of the cross-section of shear connectors placed perpendicularly (Π-shaped) at the surface and the area of that surface. The same ratio is understood as after evaluating the Π-shaped shear links, each of them is replaced by a Λ-shaped link at the same location. As a result, compared to the bending capacity of the frame whose surfaces are smooth, Λ-shaped connectors enhance the bending capacity of the frame up to 9.67% while the amount of improvement brought by Π-shaped ones is modest, about 2.172%. After that, a wide variety of the ratio of Λ-shaped connectors, 9 values, are placed on concrete-to-concrete interfaces. Tremendously, due to clamping stress brought by Λ-shaped shear connectors at the concrete substrates, the nonlinear behavior is improved and the amount of enhancement rises as the number of applied connectors is augmented but not linearly. The most important observation is that the amount of improvement is insignificant after the ratio of shear connectors reaches the percentage of between 0.3% and 0.4%. On the other hand, compared with the frame whose interfaces are smooth, the displacement ductility factor of the frame strengthened using 0.4% decreases an amount of about 30%.


2013 ◽  
Vol 353-356 ◽  
pp. 1986-1989
Author(s):  
Jin Shi Guo ◽  
Xin Ying Xie

“strong beam and weak column”is the main failure states of reinforced concrete frame structure in the earthquake.This paper is the experimental study of the influence on the virtual cross-section bearing capacity on extremity of frame beam in reinforced concrete,which is affected by some element,such as slab reinforcement,the rigidity of orthogonal beam and so on.Exploring the mechanism of slab and frame work together to determine the width of effective flange,which provides references for structural design and engineering application.


2021 ◽  
Vol 11 (1) ◽  
pp. 6674-6679
Author(s):  
H. Ullah ◽  
M. Rizwan ◽  
M. Fahad ◽  
S. A. A. Shah

This paper presents the findings of an experimental investigation on a reinforced concrete frame structure (ordinary moment resistant frame). The test model was subjected to lateral excitation employing the 1994 Northridge earthquake accelerogram. The reinforced concrete test model was fabricated in 1:3 reduced scale acquiring dimensional similarities. The utilized ingredient mix ratio was 1:1.65:1.75 and the water to binder ratio was 0.47. The dynamic characteristics (natural frequency and elastic viscous damping) were calculated using the free vibration record. Story shear, drift, and displacement profiles were drawn using multiple excitation records along with damage patterns and capacity curves. The natural frequency of 2.47Hz was calculated for the test specimen, which is equivalent to 1.41Hz for the prototype. Structural damping (elastic viscous) of 12.36% was calculated for the prototype.


Author(s):  
Volodymyr Mashchenko ◽  
Valentine Krivtsov ◽  
Volodymyr Kvasnikov ◽  
Volodymyr Drevetskiy

The paper deals with its own oscillations of a rectangular rod with a cross section of a rectangular shape. The method of determining real part of Young's dynamic modulus and tangent of mechanical loss of samples in the form of rods of a number of polymer materials by means of resonant vibrating-reed method are proposed. Experimental setup, algorithm and software for determining the amplitude of the sample oscillations are developed. The accuracy of measurements was determined and a comparative analysis of results was performed with data obtained by other methods.


2021 ◽  
Vol 7 (4) ◽  
pp. 614-632
Author(s):  
Sayeh Beroual ◽  
Mohamed Laid Samai

The comparison between steel structures and reinforced concrete structures has always been governed by economy and response to earthquake. Steel structures being lighter and are thus more efficient to resist earthquake. On the other hand, they are more expensive (4 to 5 times). Theoretically, two structural elements having the same plastic moment have an equal failure or collapse load. Different profiles of IPE are realized in industry and all their characteristics are determined with a great precision (weight, geometrical characteristics and thus their plastic moment). Determining equivalent rectangular singly reinforced concrete cross-sections is not easy and seems impossible to be solved analytically. To a given profile it may be found a multitude of equivalent rectangular reinforced concrete cross-section (singly and doubly reinforced with different yield strengths and compositions of concrete). To take into consideration all these factors, it is absolutely necessary to construct three axis design charts with an appropriate choice of system of coordinates in order to cover all possible ranges of different parameters. The choice of all these possible rectangular reinforced concrete sections is governed by the plastic performance of these later. They must be under reinforced, allowing plastification of steel before failure in order to permit the redistribution phenomenon in plastic analysis. The exploitation of these different charts has revealed that the absolute majority of these rectangular reinforced concrete cross-section are reasonably well designed and are in conformity with the dimensions used in practice. The results of the present characterization using Eurocode 2 characteristics are compared to those of CP110. The impact does not seem to be very relevant. Doi: 10.28991/cej-2021-03091677 Full Text: PDF


2021 ◽  
pp. 875529302110338
Author(s):  
Vishvendra Bhanu ◽  
Reagan Chandramohan ◽  
Timothy J Sullivan

This study investigates the influence of ground motion duration on the dynamic deformation capacity of a suite of 10 modern reinforced concrete moment frame buildings. A robust numerical algorithm is proposed to estimate the dynamic deformation capacity of a structure by conducting incremental dynamic analysis. The geometric mean dynamic deformation capacity of the considered buildings was, on average, found to be 26% lower under long duration ground motions, compared to spectrally equivalent short duration ground motions. A consistent effect of duration on dynamic deformation capacity was observed over a broad range of structural periods considered in this study. Response spectral shape, however, was found to not significantly influence dynamic deformation capacity. These results indicate that the effect of duration could be explicitly considered in seismic design codes by modifying the deformation capacities of structures.


Sign in / Sign up

Export Citation Format

Share Document