scholarly journals Performance evaluation of a Compression Ignition Engine using Sand Apple (Parinari polyandra B.) ethyl ester (biodiesel)

2021 ◽  
Vol 40 (2) ◽  
pp. 348-356
Author(s):  
A. Saleh ◽  
F.B. Akande ◽  
D.T. Adeyemi ◽  
O.O. Oniya

The quest for non-edible oil for the production of alternative fuel (bio-fuel) using homogeneous catalysts continues to supplement and replace in totality the traditional transportation fuels that are not environmentally friendly. The use of biodiesel in Compression Ignition Engines (CIE) to evaluate the engine performance is a norm and blends of biodiesel and Automotive Gas Oil (AGO) are also used in the engine performance processes to ascertain its usage in the CIE. Therefore, this study evaluated the performance of a compression-ignition engine (CIE) fuelled with biodiesel produced from sand apple oil using eggshell as a heterogeneous catalyst. Transesterification of Sand Apple Oil (SAO) with ethanol to produce ethyl ester and glycerol was optimized. Sand Apple Ethyl Esters (SAEE) was blended with Automotive Gas Oil (AGO) at 5 – 25% mix to evaluate the performance of a 3.68 kW diesel engine at five loading conditions (0, 25. 50, 75, 100%). Performance tests were carried out to determine torque, speed, exhaust gas temperature and fuel consumption rate. Data obtained were analyzed using ANOVA at P < 0.05 significant level. Results of parameters tested ranged from 6.50 – 6.60 Nm, 2795 – 2950 rpm, 385 – 400 °C and 2.93 – 5.00 × 10−6 kg/s, respectively for all the blends. The study established that the performance of the diesel engine using 5 – 25% SAEE-AGO blends was similar to using AGO alone and SAEE is therefore suitable for use in the CIE.

2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110187
Author(s):  
Okechukwu Dominic Onukwuli ◽  
Chizoo Esonye ◽  
Akuzuo Uwaoma Ofoefule

Reports on the optimum brake-power, surrogate fuel, engine emissions, and efficiency using hybrid model on high compression ratio diesel engines are very imperative for effective application of biodiesel in power and renewable energy generation. This study presents Dyacrodes edulis biodiesel engine performance and combustion release optimization using response surface methodology-genetic algorithm (RSM-GA) as well as the variation of key engine efficiency and exhaust release indices with brake power and fuel blend in a high compression ratio (CR) diesel engine. Combustion emission impacts of the blends with respect to petro-diesel decreased in values except for NOX. Brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), brake mean effective pressure (BMEP), volumetric efficiency, and exhaust temperature increased with brake power while specific energies decreased with load. Optimum conditions obtained using integrated RSM-GA were 40.03%, 0.05 kg/kW-h, 0.03%, 132.30 ppm, and 18.84 ppm for BTE, BSFC, CO, NOx, and HC respectively at low factor (engine load, engine speed, and fuel blend) conditions. At the optimum conditions, the experimental validation results were 44.01%, 0.05 kg/kW-h, 0.04%, 130.05 ppm, and 20.33 ppm for BTE, BSFC, CO, NOx, and HC respectively. The application of the feedstock in compression ignition engine is viable.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Ameer Suhel ◽  
Norwazan Abdul Rahim ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Khairol Amali Bin Ahmad ◽  
Yew Heng Teoh ◽  
...  

In recent years, industries have been investing to develop a potential alternative fuel to substitute the depleting fossil fuels which emit noxious emissions. Present work investigated the effect of ferrous ferric oxide nano-additive on performance and emission parameters of compression ignition engine fuelled with chicken fat methyl ester blends. The nano-additive was included with various methyl ester blends at different ppm of 50, 100, and 150 through the ultrasonication process. Probe sonicator was utilized for nano-fuel preparation to inhibit the formation of agglomeration of nanoparticles in base fuel. Experimental results revealed that the addition of 100 ppm dosage of ferrous ferric oxide nanoparticles in blends significantly improves the combustion performance and substantially decrease the pernicious emissions of the engine. It is also found from an experimental results analysis that brake thermal efficiency (BTE) improved by 4.84%, a reduction in brake specific fuel consumption (BSFC) by 10.44%, brake specific energy consumption (BSEC) by 9.44%, exhaust gas temperature (EGT) by 19.47%, carbon monoxides (CO) by 53.22%, unburned hydrocarbon (UHC) by 21.73%, nitrogen oxides (NOx) by 15.39%, and smoke by 14.73% for the nano-fuel B20FFO100 blend. By seeing of analysis, it is concluded that the doping of ferrous ferric oxide nano-additive in chicken fat methyl ester blends shows an overall development in engine characteristics.


2016 ◽  
Author(s):  
Henrique Dornelles ◽  
Jácson Antolini ◽  
Rafael Sari ◽  
Macklini Dalla Nora ◽  
Paulo Romeu Machado ◽  
...  

Author(s):  
Yuanjiang Pei ◽  
Marco Mehl ◽  
Wei Liu ◽  
Tianfeng Lu ◽  
William J. Pitz ◽  
...  

A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition (CI) engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multicomponent mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine (RCM) and shock tube (ST), speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in STs and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11,754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 700–1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the engine combustion network (ECN) website. These multidimensional simulations were performed using a representative interactive flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regard to the predictions of ignition delay and lift-off length at different ambient temperatures.


Sign in / Sign up

Export Citation Format

Share Document