scholarly journals Effects of mycelial extract and crude protein of the medicinal mushroom, Ophiocordyceps sobolifera, on the pathogenic fungus, Candida albicans

2019 ◽  
Vol 17 (12) ◽  
pp. 2449 ◽  
Author(s):  
Aphidech Sangdee ◽  
Kusavadee Sangdee ◽  
Benjaporn Buranrat ◽  
Sutthiwan Thammawat
Biologia ◽  
2020 ◽  
Vol 75 (10) ◽  
pp. 1759-1768 ◽  
Author(s):  
Benjaporn Buranrat ◽  
Kusavadee Sangdee ◽  
Sutthiwan Thammawat ◽  
Aphidech Sangdee

2021 ◽  
Vol 22 (4) ◽  
pp. 2127
Author(s):  
Jakub Suchodolski ◽  
Anna Krasowska

Candida albicans is a pathogenic fungus that is increasingly developing multidrug resistance (MDR), including resistance to azole drugs such as fluconazole (FLC). This is partially a result of the increased synthesis of membrane efflux transporters Cdr1p, Cdr2p, and Mdr1p. Although all these proteins can export FLC, only Cdr1p is expressed constitutively. In this study, the effect of elevated fructose, as a carbon source, on the MDR was evaluated. It was shown that fructose, elevated in the serum of diabetics, promotes FLC resistance. Using C. albicans strains with green fluorescent protein (GFP) tagged MDR transporters, it was determined that the FLC-resistance phenotype occurs as a result of Mdr1p activation and via the increased induction of higher Cdr1p levels. It was observed that fructose-grown C. albicans cells displayed a high efflux activity of both transporters as opposed to glucose-grown cells, which synthesize Cdr1p but not Mdr1p. Additionally, it was concluded that elevated fructose serum levels induce the de novo production of Mdr1p after 60 min. In combination with glucose, however, fructose induces Mdr1p production as soon as after 30 min. It is proposed that fructose may be one of the biochemical factors responsible for Mdr1p production in C. albicans cells.


2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


2016 ◽  
Vol 60 (10) ◽  
pp. 5858-5866 ◽  
Author(s):  
Somanon Bhattacharya ◽  
Jack D. Sobel ◽  
Theodore C. White

ABSTRACTCandida albicansis a pathogenic fungus causing vulvovaginal candidiasis (VVC). Azole drugs, such as fluconazole, are the most common treatment for these infections. Recently, azole-resistant vaginalC. albicansisolates have been detected in patients with recurring and refractory vaginal infections. However, the mechanisms of resistance in vaginalC. albicansisolates have not been studied in detail. In oral and systemic resistant isolates, overexpression of the ABC transporters Cdr1p and Cdr2p and the major facilitator transporter Mdr1p is associated with resistance. Sixteen fluconazole-susceptible and 22 fluconazole-resistant vaginalC. albicansisolates were obtained, including six matched sets containing a susceptible and a resistant isolate, from individual patients. Using quantitative real-time reverse transcriptase PCR (qRT-PCR), 16 of 22 resistant isolates showed overexpression of at least one efflux pump gene, while only 1 of 16 susceptible isolates showed such overexpression. To evaluate the pump activity associated with overexpression, an assay that combined data from two separate fluorescent assays using rhodamine 6G and alanine β-naphthylamide was developed. The qRT-PCR results and activity assay results were in good agreement. This combination of two fluorescent assays can be used to study efflux pumps as resistance mechanisms in clinical isolates. These results demonstrate that efflux pumps are a significant resistance mechanism in vaginalC. albicansisolates.


Microbiology ◽  
1998 ◽  
Vol 144 (2) ◽  
pp. 425-432 ◽  
Author(s):  
S. Nagahashi ◽  
T. Mio ◽  
N. Ono ◽  
T. Yamada-Okabe ◽  
M. Arisawa ◽  
...  

Author(s):  
Tomojiro Koide ◽  
Muneaki Tamura

Abstract The antifungal effect of diglyceryl dicaprylate (DGDC), one of the emulsifiers used as a food additive, on Candida albicans which is a pathogenic fungus that is predominant in the oral cavity was investigated. This component did not affect C. albicans growth, however, it suppressed some virulence factors in a concentration-dependent manner. Furthermore, the suppression of pathogenic factors, such as biofilm formation, adhesion, highly pathogenic dimorphism, and ability to produce proteolytic enzymes was due to reduction in mRNA expression levels of genes involved in fungal pathogenicities. From these results, this emulsifier could potentially prevent the development of intraoral and extraoral diseases involving C. albicans and could potentially use in oral care and improvement of quality of life.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 752 ◽  
Author(s):  
Graziella Ficociello ◽  
Maria De Caris ◽  
Giusy Trillò ◽  
Domenico Cavallini ◽  
Maria Sarto ◽  
...  

Candida albicans is the most common pathogenic fungus that is isolated in nosocomial infections in medically and immune-compromised patients. The ability of C. albicans to convert its form from yeast to hyphal morphology contributes to biofilm development that effectively shelters Candida against the action of antifungals molecules. In the last years, nanocomposites are the most promising solutions against drug-resistant microorganisms. The aim of this study was to investigate the antifungal activity of graphene nanoplateles decorated with zinc oxide nanorods (ZNGs) against the human pathogen Candida albicans. We observed that ZNGs were able to induce a significant mortality in fungal cells, as well as to affect the main virulence factors of this fungus or rather the hyphal development and biofilm formation. Reactive Oxygen Species (ROS) formation in yeast cells resulted one of the mechanisms of ZNGs to induce mortality. Finally, the toxicity of this nanomaterial was tested also on human keratinocyte cell line HaCaT. Our data indicated that ZNGs resulted not toxic when their aggregation state decreased by adding glycerol as emulsifier to ZNGs suspensions or when HaCaT cells were grown on ZNGs-coated glasses. Overall, the results that were obtained indicated that ZNGs could be exploited as an antifungal nanomaterial with a high degree of biocompatibility on human cells.


Microbiology ◽  
2011 ◽  
Vol 157 (1) ◽  
pp. 136-146 ◽  
Author(s):  
Grazyna J. Sosinska ◽  
Leo J. de Koning ◽  
Piet W. J. de Groot ◽  
Erik M. M. Manders ◽  
Henk L. Dekker ◽  
...  

The mucosal layers colonized by the pathogenic fungus Candida albicans differ widely in ambient pH. Because the properties and functions of wall proteins are probably pH dependent, we hypothesized that C. albicans adapts its wall proteome to the external pH. We developed an in vitro system that mimics colonization of mucosal surfaces by growing biomats at pH 7 and 4 on semi-solid agarose containing mucin as the sole nitrogen source. The biomats expanded radially for at least 8 days at a rate of ∼30 μm h−1. At pH 7, hyphal growth predominated and growth was invasive, whereas at pH 4 only yeast and pseudohyphal cells were present and growth was noninvasive. Both qualitative mass spectrometric analysis of the wall proteome by tandem mass spectrometry and relative quantification of individual wall proteins (pH 7/pH 4), using Fourier transform mass spectrometry (FT-MS) and a reference mixture of 15N-labelled yeast and hyphal walls, identified similar sets of >20 covalently linked wall proteins. The adhesion proteins Als1 and Als3, Hyr1, the transglucosidase Phr1, the detoxification enzyme Sod5 and the mammalian transglutaminase substrate Hwp1 (immunological detection) were only present at pH 7, whereas at pH 4 the level of the transglucosidase Phr2 was >35-fold higher than at pH 7. Sixteen out of the 22 proteins identified by FT-MS showed a greater than twofold change. These results demonstrate that ambient pH strongly affects the wall proteome of C. albicans, show that our quantitative approach can give detailed insights into the dynamics of the wall proteome, and point to potential vaccine targets.


2011 ◽  
Vol 108 (38) ◽  
pp. 15775-15779 ◽  
Author(s):  
P. S. Salgado ◽  
R. Yan ◽  
J. D. Taylor ◽  
L. Burchell ◽  
R. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document