scholarly journals Gene encoding virulence markers among Escherichia coli isolates from diarrhoeic stool samples and river sources in rural Venda communities of South Africa

Water SA ◽  
2004 ◽  
Vol 30 (1) ◽  
Author(s):  
CL Obi ◽  
E Green ◽  
PO Bessong ◽  
B De Villiers ◽  
AA Hoosen ◽  
...  
2020 ◽  
Vol 14 (1) ◽  
pp. 321-330
Author(s):  
Nwabisa Azisa Mkuhlu ◽  
Iweriebor Benson Chuks ◽  
Obi Larry Chikwelu

Objectives: Developing countries like South Africa are still faced with numerous challenges such as poor environmental sanitation, lack of clean drinking water and inadequate hygiene which have contributed largely to diarrheal infections and deaths in children. This study was aimed at investigating the prevalence of pathotypes, antimicrobial resistance and drug resistance determinants among Escherichia coli (E. coli) isolates from diarrhea stool samples within Buffalo City Municipality, Eastern Cape, South Africa. Methods: Fresh diarrheal stool samples were collected from 140 patients attending public health centres within the Municipality and presumptive E. coli isolates were obtained from the stool samples using E. coli chromogenic agar while PCR amplification methods were used to confirm the presumptive isolates as well as delineate them into pathotypes based on the presence of certain virulence genes. In addition, antimicrobial susceptibility and screening of some of the antimicrobial resistant determinants were performed on all the confirmed isolates. Results: A total of 394 presumptive E. coli isolates from 140 diarrhea stool samples were subjected to polymerase chain reaction amplification, of which 265 were confirmed positive as E. coli. Pathotypes delineation of the positive E. coli isolates validated the presence of ETEC 106 (40%), EAEC 48 (18%), DAEC 37 (14%), and EPEC 31 (11%) while no EIEC pathotype was detected. All E. coli isolates exhibited maximum susceptibility to gentamicin (95%), amikacin (91%), nitrofurantoin (91%), meropenem (90%), chloramphenicol (91%) norfloxacin (84%) and imipenem (83%). However, the isolates showed multidrug resistance to penicillin G, ampicillin, trimethoprim, tetracycline, doxycycline, and erythromycin, with over 71% of the isolates resistant to the drugs. The prevalence and distribution of the five resistance determinants assessed were as follow; sulphonamides; sulII (12%), beta lactams; [ampC (22%); blaTEM, (25%)], and tetracyclines (tetA (35%). Conclusion: The results from this study suggest the probable involvement of E. coli pathotypes as an etiologic agent of diarrhea in the study area and revealed high levels of multidrug resistance among the isolates, which could be a major health burden.


2020 ◽  
Vol 8 (11) ◽  
pp. 1801
Author(s):  
Michael Bording-Jorgensen ◽  
Brendon D. Parsons ◽  
Gillian A.M. Tarr ◽  
Binal Shah-Gandhi ◽  
Colin Lloyd ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) are associated with acute gastroenteritis worldwide, which induces a high economic burden on both healthcare and individuals. Culture-independent diagnostic tests (CIDT) in frontline microbiology laboratories have been implemented in Alberta since 2019. The objectives of this study were to determine the association between gene detection and culture positivity over time using STEC microbiological clearance samples and also to establish the frequency of specimen submission. Both stx genes’ amplification by real-time PCR was performed with DNA extracted from stool samples using the easyMAG system. Stools were inoculated onto chromogenic agar for culture. An association between gene detection and culture positivity was found to be independent of which stx gene was present. CIDT can provide rapid reporting with less hands-on time and technical expertise. However, culture is still important for surveillance and early cluster detection. In addition, stool submissions could be reduced from daily to every 3–5 days until a sample is negative by culture.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 393
Author(s):  
Mpho Magwalivha ◽  
Jean-Pierre Kabue Ngandu ◽  
Afsatou Ndama Traore ◽  
Natasha Potgieter

Diarrhoeal disease is considered an important cause of morbidity and mortality in developing areas, and a large contributor to the burden of disease in children younger than five years of age. This study investigated the prevalence and genogroups of human sapovirus (SV) in children ≤5 years of age in rural communities of Vhembe district, South Africa. Between 2017 and 2020, a total of 284 stool samples were collected from children suffering with diarrhoea (n = 228) and from children without diarrhoea (n = 56). RNA extraction using Boom extraction method, and screening for SV using real-time PCR were done in the lab. Positive samples were subjected to conventional RT-PCR targeting the capsid fragment. Positive sample isolates were genotyped using Sanger sequencing. Overall SV were detected in 14.1% (40/284) of the stool samples (16.7% (38/228) of diarrhoeal and 3.6% (2/56) of non-diarrhoeal samples). Significant correlation between SV positive cases and water sources was noted. Genogroup-I was identified as the most prevalent strain comprising 81.3% (13/16), followed by SV-GII 12.5% (2/16) and SV-GIV 6.2% (1/16). This study provides valuable data on prevalence of SV amongst outpatients in rural and underdeveloped communities, and highlights the necessity for further monitoring of SV circulating strains as potential emerging strains.


1986 ◽  
Vol 261 (32) ◽  
pp. 14929-14935
Author(s):  
J W Chase ◽  
B A Rabin ◽  
J B Murphy ◽  
K L Stone ◽  
K R Williams

2000 ◽  
Vol 182 (17) ◽  
pp. 4862-4867 ◽  
Author(s):  
Marion Graupner ◽  
Huimin Xu ◽  
Robert H. White

ABSTRACT The products of two adjacent genes in the chromosome ofMethanococcus jannaschii are similar to the amino and carboxyl halves of phosphonopyruvate decarboxylase, the enzyme that catalyzes the second step of fosfomycin biosynthesis inStreptomyces wedmorensis. These two M. jannaschii genes were recombinantly expressed inEscherichia coli, and their gene products were tested for the ability to catalyze the decarboxylation of a series of α-ketoacids. Both subunits are required to form an α6β6 dodecamer that specifically catalyzes the decarboxylation of sulfopyruvic acid to sulfoacetaldehyde. This transformation is the fourth step in the biosynthesis of coenzyme M, a crucial cofactor in methanogenesis and aliphatic alkene metabolism. The M. jannaschiisulfopyruvate decarboxylase was found to be inactivated by oxygen and reactivated by reduction with dithionite. The two subunits, designated ComD and ComE, comprise the first enzyme for the biosynthesis of coenzyme M to be described.


2012 ◽  
Vol 79 (1) ◽  
pp. 411-414 ◽  
Author(s):  
Afonso G. Abreu ◽  
Vanessa Bueris ◽  
Tatiane M. Porangaba ◽  
Marcelo P. Sircili ◽  
Fernando Navarro-Garcia ◽  
...  

ABSTRACTAutotransporter (AT) protein-encoding genes of diarrheagenicEscherichia coli(DEC) pathotypes (cah,eatA,ehaABCDJ,espC,espI,espP,pet,pic,sat, andtibA) were detected in typical and atypical enteropathogenicE. coli(EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.


2016 ◽  
Vol 55 (3) ◽  
pp. 844-858 ◽  
Author(s):  
Per Sikora ◽  
Sofia Andersson ◽  
Jadwiga Winiecka-Krusnell ◽  
Björn Hallström ◽  
Cecilia Alsmark ◽  
...  

ABSTRACTIn order to improve genotyping and epidemiological analysis ofCryptosporidiumspp., genomic data need to be generated directly from a broad range of clinical specimens. Utilizing a robust method that we developed for the purification and generation of amplified target DNA, we present its application for the successful isolation and whole-genome sequencing of 14 differentCryptosporidium hominispatient specimens. Six isolates of subtype IbA10G2 were analyzed together with a single representative each of 8 other subtypes: IaA20R3, IaA23R3, IbA9G3, IbA13G3, IdA14, IeA11G3T3, IfA12G1, and IkA18G1. Parasite burden was measured over a range of more than 2 orders of magnitude for all samples, while the genomes were sequenced to mean depths of between 17× and 490× coverage. Sequence homology-based functional annotation identified several genes of interest, including the gene encodingCryptosporidiumoocyst wall protein 9 (COWP9), which presented a predicted loss-of-function mutation in all the sequence subtypes, except for that seen with IbA10G2, which has a sequence identical to theCryptosporidium parvumreference Iowa II sequence. Furthermore, phylogenetic analysis showed that all the IbA10G2 genomes form a monophyletic clade in theC. hoministree as expected and yet display some heterogeneity within the IbA10G2 subtype. The current report validates the aforementioned method for isolating and sequencingCryptosporidiumdirectly from clinical stool samples. In addition, the analysis demonstrates the potential in mining data generated from sequencing multiple whole genomes ofCryptosporidiumfrom human fecal samples, while alluding to the potential for a higher degree of genotyping withinCryptosporidiumepidemiology.


Sign in / Sign up

Export Citation Format

Share Document