Attachment of Listeria monocytogenes to Stainless Steel, Glass, Polypropylene, and Rubber Surfaces After Short Contact Times

1990 ◽  
Vol 53 (9) ◽  
pp. 742-746 ◽  
Author(s):  
AKIER ASSANTA MAFU ◽  
DENIS ROY ◽  
JACQUES GOULET ◽  
PIERRE MAGNY

This study was carried out to investigate the attachment capabilities of Listeria monocytogenes strain Scott A to stainless steel, glass, polypropylene, and rubber surfaces after short contact times at ambient (20°C) and cold storage temperatures (4°C) using scanning electron microscopy technique. Surface energy value of each surface was estimated by contact angle measurements. All surfaces displayed many possible harborages for L. monocytogenes attachment. Our results indicated that L. monocytogenes cells could attach to all surface types at both temperatures after contact times as short as 20 min or 1 h. Extracellular materials could be observed on the surfaces especially polypropylene and glass incubated at 4 and 20°C for 1 h respectively.

1998 ◽  
Vol 61 (10) ◽  
pp. 1321-1329 ◽  
Author(s):  
MAFU AKIER ASSANTA ◽  
DENIS ROY ◽  
DIANE MONTPETIT

Scanning electron microscopy observation was used to investigate the ability of Aeromonas hydrophila to attach to various water distribution pipe surfaces, such as stainless Steel, copper, and polybutylene, after different contact times at ambient and storage temperatures. Surface energy value of each surface was estimated by contact angle measurements using water, α-bromonaphthalene, and dimethyl sulfoxide. Our results indicated that Aeromonas cells could easily attach to all surface types after exposures as short as 1 or 4 h at both temperatures (4 and 20°C). Polybutylene, a low-energy surface (41.2 mJ-m−2), followed by stainless Steel (65.7 mJ-m−2), was most colonized by Aeromonas cells, whereas few cells were observed on copper, which has a surface energy of 45.8 mJ-m−2. Extracellular materials could also be observed on polybutylene surfaces, especially after 1 and 4 h of exposure at the refrigeration temperature.


2016 ◽  
Vol 869 ◽  
pp. 913-917 ◽  
Author(s):  
Ana Lucia do Amaral Escada ◽  
Javier Andres Muñoz Chaves ◽  
Ana Paula Rosifini Alves Claro

The purpose of this study was to evaluate the TiO2 nanotubes growth and the variation in its diameter to improve the surface properties of Ti-7.5Mo to use for biomedical applications. For the nanotubes TiO2 growth, the samples were anodized in glycerol and ammonium fluoride and divided according to the anodizing potential at 5V to 10V and 24 hour time. The surfaces were examined by scanning electron microscope (SEM), X-ray analysis (XRD) and contact angle measurements. The average tube diameter, ranging in size from 13 to 23 nm, was found to increase with increasing anodizing voltage. It was also observed a decrease in contact angle in accordance with the increase in the anodizing potential. The X-ray analysis showed the presence of anatase phase in samples whose potential was 10V and this condition represents a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Tobyn A. Branck ◽  
Matthew J. Hurley ◽  
Gianna N. Prata ◽  
Christina A. Crivello ◽  
Patrick J. Marek

ABSTRACT Listeria monocytogenes is of great concern in food processing facilities because it persists in biofilms, facilitating biotransfer. Stainless steel is commonly used for food contact surfaces and transport containers. L. monocytogenes biofilms on stainless steel served as a model system for surface sampling, to test the performance of a sonicating swab in comparison with a standard cotton swab. Swab performance and consistency were determined using total viable counts. Stainless steel coupons sampled with both types of swabs were examined using scanning electron microscopy, to visualize biofilms and surface structures (i.e., polishing grooves and scratches). Laser scanning confocal microscopy was used to image and to quantitate the biofilms remaining after sampling with each swab type. The total viable counts were significantly higher (P ≤ 0.05) with the sonicating swab than with the standard swab in each trial. The sonicating swab was more consistent in cell recovery than was the standard swab, with coefficients of variation ranging from 8.9% to 12.3% and from 7.1% to 37.6%, respectively. Scanning electron microscopic imaging showed that biofilms remained in the polished grooves of the coupons sampled with the standard swab but were noticeably absent with the sonicating swab. Percent area measurements of biofilms remaining on the stainless steel coupons showed significantly (P ≤ 0.05) less biofilm remaining when the sonicating swab was used (median, 1.1%), compared with the standard swab (median, 70.4%). The sonicating swab provided greater recovery of cells, with more consistency, than did the standard swab, and it is employs sonication, suction, and scrubbing. IMPORTANCE Inadequate surface sampling can result in foodborne illness outbreaks from biotransfer, since verification of sanitization protocols relies on surface sampling and recovery of microorganisms for detection and enumeration. Swabbing is a standard method for microbiological sampling of surfaces. Although swabbing offers portability and ease of use, there are limitations, such as high user variability and low recovery rates, which can be attributed to many different causes. This study demonstrates some benefits that a sonicating swab has over a standard swab for removal and collection of microbiological samples from a surface, to provide better verification of surface cleanliness and to help decrease the potential for biotransfer of pathogens into foods.


2015 ◽  
Vol 654 ◽  
pp. 218-223 ◽  
Author(s):  
Alexander Heinemann ◽  
Sven Koenen ◽  
Kerstin Schwabe ◽  
Christoph Rehbock ◽  
Stephan Barcikowski

Electrophoretic deposition of ligand-free platinum nanoparticles has been studied to elucidate how wettability, indicated by contact angle measurements, is linked to vital parameters of the electrophoretic deposition process. These parameters, namely the colloid concentration, electric field strength and deposition time, have been systematically varied in order to determine their influence on the contact angle. Additionally, scanning electron microscopy has been used to confirm the homogeneity of the achieved coatings.


Cerâmica ◽  
2019 ◽  
Vol 65 (375) ◽  
pp. 327-334 ◽  
Author(s):  
P. A. Marques ◽  
K. F. Albertin ◽  
G. Z. Monteiro ◽  
I. Pereyra

Abstract Different thicknesses of photoresist layers were deposited on the Ti foil in order to decrease the initial current during the anodization process, avoiding or diminishing in this way the formation of the initial compact TiO2 layer. The studies of the initial synthesis stages were performed in both cases, for the conventional synthesis and for that with photoresist layer on top of the Ti foil. TiO2 nanotube pH electrodes were fabricated to study the effect of this change in the anodization process. The nanostructure morphology was analyzed through scanning electron microscopy technique. Total removal of the undesirable layer and a complete release of the nanotube mouth were obtained. The pH electrodes were characterized utilizing a buffer solution and improved pH sensitivity and absence of hysteresis effects were observed for the devices fabricated with TiO2 nanotubes obtained with the optimized process.


Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 643-656 ◽  
Author(s):  
Zhi-Lin Cheng ◽  
Xing-Yu Chang ◽  
Zan Liu ◽  
Dun-Zhong Qin

ABSTRACTIn order to improve the dispersibility of halloysite nanotubes (HNTs) in polytetrafluoroethylene (PTFE), the modification of HNT surfaces was studied with three types of modifiers (polymethyl methacrylate [PMMA], sodium dodecyl sulfate [SDS] and carboxylic acid). The modified HNTs were characterized by Fourier-transform infrared (FTIR) spectrometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and contact angle measurements. The HNTs were used to reinforce the mechanical properties of PTFE. The mechanical results indicated that the tensile strength of the modified HNT-filled PTFE nanocomposites (F-HNT/PTFE) improved to an acceptable degree and Young's modulus increased significantly. The tribological results showed that the wear rate of F-HNT/PTFE decreased by 21–82 and 9–40 times compared to pure PTFE and the pristine F-HNT/PTFE, respectively.


2007 ◽  
Vol 345-346 ◽  
pp. 1269-1272 ◽  
Author(s):  
Eszter Bognár ◽  
György Ring ◽  
Hilda Zsanett Marton ◽  
János Dobránszky ◽  
János Ginsztler

Stents are special metallic or polymer endoprostheses of meshed structure and tube shape. Their function is to prevent restenosis in the arteries. Stents can be coated or uncoated. In the expanded part of the artery the chance of restenosis is bigger even without a stent so it is practical to coat the stents. The aim of this work is to present the results of the coating experiments made on the coronary stents. Three types of commercially available polyurethanes were used for these experiments. The coatings were produced by a dipping method. Electro-polished and non-electro-polished metallic sheets and stents were used for these experiments. Contact angle measurements were done to examine the wetting properties of the three different polyurethane coatings. The quality and the changing of the coatings were examined by different methods (stereomicroscope, scanning electron microscope and energy dispersive spectrometry).


Sign in / Sign up

Export Citation Format

Share Document