Effects of Steam-Vacuuming and Hot Water Spray Wash on the Microflora of Refrigerated Beef Carcass Surface Tissue Inoculated with Escherichia coli O157:H7, Listeria innocua, and Clostridium sporogenes†

1997 ◽  
Vol 60 (2) ◽  
pp. 114-119 ◽  
Author(s):  
WARREN J. DORSA ◽  
CATHERINE N. CUTTER ◽  
GREGORY R. SIRAGUSA

The fates of several bacterial populations on beef carcass surfaces were examined immediately following hot water washes (W) delivered through a beef carcass wash cabinet or application of steam-vacuum (SV). Additionally, the long-range effectiveness of W and SV on several bacterial populations was also determined during storage up to 21 days at 5°C under vacuum-packaged conditions. Fresh, unaltered bovine feces spiked with antibiotic-resistant strains of Escherichia coli O157:H7, Listeria innocua, and Clostridium sporogenes were used to inoculate beef carcass tissue prior to W or SV treatment. All treatments were equally effective as is indicated by bacterial populations immediately following any of the treatments (P > 0.05); however, the combination of SV followed by W consistently produced arithmetically greater bacterial reductions. In general, all treatments produced initial reductions of up to 2.7 log CFU/cm2 for APC, lactic acid bacteria, and L. innocua, but by 14 days bacterial numbers had increased to levels of at least 7 log CFU/cm2. E. coli O157:H7 was initially reduced by as much as 3.4 log CFU/cm2 and did not grow to original inoculation levels for the duration of the experiment. Vegetative counts of C. sporogenes were initially reduced by as much as 3.4 log CFU/cm2, and numbers continued to decline for the duration of the study. These results indicate that the use of W and SV effectively reduces bacterial populations from beef carcass tissue immediately after treatment. Additionally, storage of treated tissue up to 21 days at 5°C did not appear to offer any competitive advantage to potentially pathogenic microorganisms.

1997 ◽  
Vol 60 (6) ◽  
pp. 619-624 ◽  
Author(s):  
WARREN J. DORSA ◽  
CATHERINE N. CUTTER ◽  
GREGORY R. SIRAGUSA

The microbial profiles of inoculated beef carcass tissue (BCT) were monitored during prolonged refrigerated vacuum-packaged storage following antimicrobial treatment. An industrial spray wash cabinet was used to deliver water (W), 1.5 and 3.0% lactic (LA) or acetic (AA) acid, or 12% trisodium phosphate (TSP) washes. Fresh unaltered bovine feces spiked with antibiotic-resistant strains of Escherichia coli O157:H7, Listeria innocua, and Clostridium sporogenes were used to inoculate BCT prior to all treatments. The effect of treatments on bacterial populations was tracked by monitoring levels of specific-antibiotic-resistant(marked) bacteria along with mesophilic aerobic bacteria (APC), lactic acid bacteria (LAB), and pseudomonads for up to 21 days of storage at 5°C. Initial APC levels of approximately 5.6 log CFU/cm2 were reduced by 1.3to 2.0 log CFU/cm2 by LA, AA, and TSP treatments. Marked bacteria were reduced to <1.3 log CFU/cm2, remaining that way throughout the 21-day storage. TSP treatments were not different in effectiveness from acids for controlling growth of E. coli O157:H7 and C. sporogenes, but were less effective for APC, L. innocua, or LAB. The aerobic bacteria, L. innocua, and LAB had counts ≥7 log CFU/cm2 by 7 days in all but one case and by 14 days all had counts >7 log CFU/cm2 on the untreated controls and water-washed samples. Treatments generally added a degree of safety regarding the foodborne pathogens and pathogen models used for the present study when beef tissue was stored up to 21 days and in no case did the treatments appear to offer any competitive advantage to select microorganisms on BCT.


1997 ◽  
Vol 60 (6) ◽  
pp. 614-618 ◽  
Author(s):  
CATHERINE N. CUTTER ◽  
WARREN J. DORSA ◽  
GREGORY R. SIRAGUSA

A series of progressive experiments was conducted with a model carcass washer using tap water and 2% acetic acid sprays to determine if tissue type, inoculation menstruum, bacterial level, or spray temperature affect removal of bacteria from beef carcass tissue during spray washing. For the first experiment, prerigor (15 min postexsanguination), postrigor (24 h postexsanguination), or postrigor frozen (−20°C, 7 days), thawed, lean beef carcass tissue (BCT) was inoculated with bovine feces and subjected to spray washing (15 s, 56°C) with water or acetic acid. Spray washing with either compound resulted in bacterial populations that were similar for prerigor and postrigor BCT; however, remaining bacterial populations from spray-treated postrigor, frozen BCT were significantly (P ≤ 0.05) less than for the other two tissue types. For the second experiment, prerigor, lean BCT was inoculated with Escherichia coli O157:H7 suspended in bovine feces or physiological saline and spray washed (15 s, 56°C) with water or acetic acid. Bacterial populations were reduced to similar levels with acid sprays, regardless of menstruum. For the third experiment, E. coli O157:H7 in feces was used to contaminate prerigor lean BCT to obtain different initial bacterial levels (7, 5,3, and 1 log CFU/cm2). Spray washes (15 s, 56°C) with acetic acid reduced the level of the pathogen to 2.51 and 0.30 log CFU/cm2 when initial bacterial levels were 7 and 5 log CFU/cm2, and to undetectable levels when initial bacterial levels were 3 and 1 log CFU/cm2. In a fourth experiment, water or acetic acid (15 s), ranging from 30 to 70°C was applied to beef tissue contaminated with E. coli O157:H7 in feces. Remaining bacterial populations were not different between the water treatments or between the acid treatments at any temperature. While variables such as bacterial level and inoculation menstruum may affect the efficacy of spray washing with organic acids, these results indicate that tissue type or spray temperature do not.


2005 ◽  
Vol 68 (11) ◽  
pp. 2411-2419 ◽  
Author(s):  
BRIGITTE LEFEBVRE ◽  
MOUSSA S. DIARRA ◽  
KARINE GIGUÈRE ◽  
GABRIEL ROY ◽  
SOPHIE MICHAUD ◽  
...  

In a longitudinal study (165 days), we investigated the effect of growth-promoting agents (monensin and trenbolone acetate–estradiol) and an antibiotic (oxytetracycline) on the incidence in feedlot steers of Escherichia coli O157, including antibiotic-resistant and hypermutable isolates. Eighty steers in 16 pens were treated with eight combinations of promoters, and each treatment was duplicated. Fecal samples were collected at nine different sampling times for detection of E. coli O157. Overall, 50 E. coli O157 isolates were detected in treated animals, and none were found in untreated animals. Compared with untreated controls, there was a significant association between the utilization of growth-promoting agents or antibiotics and the shedding of E. coli O157 at day 137 (P = 0.03), when a prevalence peak was observed and 50% of the isolates were detected. Multiplex PCR assays were conducted for some virulence genes. PCR results indicated that all except one isolate possessed at least the Shiga toxin gene stx2. MICs for 12 antibiotics were determined, and eight oxytetracycline-resistant E. coli O157 strains were identified. Antibiotic-resistant strains were considered a distinct subpopulation of E. coli O157 by pulsed-field gel electrophoresis typing. Seven of these antibiotic-resistant strains were isolated early in the study (on or before day 25), and among them two were also hypermutable as determined by rifampin mutation frequencies. The proportion of hypermutable strains among E. coli O157 isolates remained relatively constant throughout the study period. These results indicate that the use of growth-promoting agents and antibiotics in beef production may increase the risk of environmental contamination by E. coli O157.


2009 ◽  
Vol 72 (1) ◽  
pp. 151-156 ◽  
Author(s):  
NORASAK KALCHAYANAND ◽  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
DAYNA M. BRICHTA-HARHAY ◽  
MICHAEL N. GUERINI ◽  
...  

1,3-Dibromo-5,5-dimethylhydantoin (DBDMH; 25°C) and hot water (85°C) spray treatments were evaluated for efficacy in decontamination of pathogenic bacteria attached to beef carcass surfaces represented by cutaneous trunci (CT) muscle sections and beef hearts. Treatments were evaluated using two different systems, a commercial carcass wash cabinet and a model carcass washer. The effects were measured immediately after treatment and again after 48 h of storage at 4°C. Sections of CT and beef hearts were inoculated with bovine fecal solution containing approximately 6 log CFU/cm2 of Escherichia coli O157:H7 and Salmonella. After DBDMH or hot water spray treatments, bacterial populations were enumerated immediately and after storage for 48 h at 4°C. DBDMH treatments reduced aerobic plate counts, Enterobacteriaceae, E. coli O157: H7, and Salmonella by the same or slightly lower amounts relative to hot water treatment. DBDMH reduced aerobic plate counts and Enterobacteriaceae by 2.8 to 3.6 log CFU/cm2, E. coli O157:H7 by 1.6 to 2.1 log CFU/cm2, and Salmonella by 0.7 to 2.3 log CFU/cm2 on CT sections and beef hearts. Hot water treatment reduced aerobic plate counts and Enterobacteriaceae by 3.0 to 4.1 log CFU/cm2, E. coli O157:H7 by 1.8 to 2.3 log CFU/cm2, and Salmonella by 2.5 to 2.8 log CFU/cm2. After 48 h of storage, the reductions of organisms by DBDMH and hot water treatments were not different. This study demonstrated that DBDMH spray washing could be effective as an antimicrobial intervention for beef carcasses and variety meats.


1994 ◽  
Vol 57 (2) ◽  
pp. 97-103 ◽  
Author(s):  
CATHERINE NETTLES CUTTER ◽  
GREGORY R. SIRAGUSA

The efficacy of organic acids for controlling Escherichia coli O157:H7 attached to beef carcass tissue was determined using a pilot scale model carcass washer. Lean or adipose surface tissues from beef carcasses were inoculated with three strains of Escherichia coli O157:H7 or Pseudomonas fluorescens. After spraying either water, 1, 3, or 5% acetic, lactic, or citric acids at 24°C, tissues were incubated for 24 h at 4°C and bacterial populations enumerated. Statistical analyses of the data indicated that acid type was not a significant treatment factor (p ≥ = 0.05); however, concentration, tissue type, and bacterial strain were significant (p ≤ = 0.0001) factors that influenced the reduction of bacterial populations on lean or adipose tissue. Of the concentrations tested on lean tissue, spray treatments with 5% were the most effective for reducing populations of E. coli O157:H7 or P. fluorescens. Differences in the resistances of the E. coli O157:H7 strains to acid washing also were observed. The magnitude of bacterial population reductions was consistently greater on adipose versus lean tissue for all bacterial strains. Surface pH data indicated that reductions of bacterial populations may have been due to the effects of acidic pH. This study demonstrates that, while organic acids did reduce populations of E. coli O157:H7 on red meat, treatments did not completely inactivate the pathogen.


2001 ◽  
Vol 64 (10) ◽  
pp. 1466-1471 ◽  
Author(s):  
M. M. BRASHEARS ◽  
A. AMEZQUITA ◽  
J. STRATTON

Escherichia coli O157:H7, Salmonella spp., and Salmonella Typhimurium DT104 were stressed with lactic acid and cell-free supernatants from lactic acid bacteria and plated on three different media to determine if injured cells were recovered. A comparison of the susceptibility and recovery of antibiotic-resistant strains of the pathogens and nonresistant strains was also made. Acid stress conditions were created by adjusting the pH of a cocktail mixture (two to four strains) of the pathogen to 3.50 with lactic acid and holding for 18 h. The pathogen cocktail was also stressed with a cell-free supernatant of Lactobacillus lactis (pH 3.90) in a 4:6 ratio. Both nonstressed and stressed cocktail cultures were plated on Trypticase soy agar (TSA) and violet red bile agar (VRBA) for E. coli and xylose lysine tergitol4 (XLT4) for Salmonella. Repair of injured cells was evaluated by pour plating the stressed cells on a 5-ml thin layer of TSA and allowing a 2-h room temperature incubation followed by overlaying with VRBA or XLT4. There were significant reductions in the populations of both pathogens under both stress conditions when plating was done on nonselective media. Injured E. coli O157:H7 was not recovered on recovery or selective media compared with TSA. Numbers of cells of supernatant-stressed Salmonella spp. plated on selective and recovery media were similar to those on TSA. Acid-stressed cells for all Salmonella spp. were not recovered on TSA, selective, or recovery media at levels comparable to recovery on TSA. Antibiotic-resistant strains showed similar recovery patterns on all media evaluated. However, the antibiotic-resistant strains were less sensitive to both stress conditions. The use of antibiotic-resistant strains resulted in a greater recovery of stressed pathogens than the use of recovery media.


Pathogens ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 811
Author(s):  
Md. Akil Hossain ◽  
Hae-Chul Park ◽  
Sung-Won Park ◽  
Seung-Chun Park ◽  
Min-Goo Seo ◽  
...  

Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281–1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2154
Author(s):  
Shamil Rafeeq ◽  
Reza Ovissipour

Removing foodborne pathogens from food surfaces and inactivating them in wash water are critical steps for reducing the number of foodborne illnesses. In this study we evaluated the impact of surfactants on enhancing nanobubbles’ efficacy on Escherichia coli O157:H7, and Listeria innocua removal from spinach leaves. We evaluated the synergistic impact of nanobubbles and ultrasound on these two pathogens inactivation in the cell suspension. The results indicated that nanobubbles or ultrasound alone could not significantly reduce bacteria in cell suspension after 15 min. However, a combination of nanobubbles and ultrasonication caused more than 6 log cfu/mL reduction after 15 min, and 7 log cfu/mL reduction after 10 min of L. innocua and E. coli, respectively. Nanobubbles also enhanced bacterial removal from spinach surface in combination with ultrasonication. Nanobubbles with ultrasound removed more than 2 and 4 log cfu/cm2 of L. innocua and E. coli, respectively, while ultrasound alone caused 0.5 and 1 log cfu/cm2 of L. innocua and E. coli reduction, respectively. No reduction was observed in the solutions with PBS and nanobubbles. Adding food-grade surfactants (0.1% Sodium dodecyl sulfate-SDS, and 0.1% Tween 20), did not significantly enhance nanobubbles efficacy on bacterial removal from spinach surface.


2019 ◽  
Vol 366 (8) ◽  
Author(s):  
Sophie Van Hamelsveld ◽  
Muyiwa E Adewale ◽  
Brigitta Kurenbach ◽  
William Godsoe ◽  
Jon S Harding ◽  
...  

Abstract Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.


2007 ◽  
Vol 70 (5) ◽  
pp. 1174-1180 ◽  
Author(s):  
C. E. HELLER ◽  
J. A. SCANGA ◽  
J. N. SOFOS ◽  
K. E. BELK ◽  
W. WARREN-SERNA ◽  
...  

The prevalence of Escherichia coli O157:H7 on beef subprimal cuts intended for mechanical tenderization was evaluated. This evaluation was followed by the assessment of five antimicrobial interventions at minimizing the risk of transferring E. coli O157:H7 to the interior of inoculated subprimal cuts during blade tenderization (BT) or moisture enhancement (ME). Prevalence of E. coli O157:H7 on 1,014 uninoculated beef subprimals collected from six packing facilities was 0.2%. Outside round pieces inoculated with E. coli O157:H7 at 104 CFU/100 cm2 were treated with (i) no intervention, (ii) surface trimming, (iii) hot water (82°C), (iv) warm 2.5% lactic acid (55°C), (v) warm 5.0% lactic acid (55°C), or (vi) 2% activated lactoferrin followed by warm 5.0% lactic acid (55°C) and then submitted to BT or ME. Prevalence (n = 196) of internalized (BT and ME) E. coli O157:H7 was 99%. Enumeration of E. coli O157:H7 (n = 192) revealed mean surface reductions of 0.93 to 1.10 log CFU/100 cm2 for all antimicrobial interventions. E. coli O157:H7 was detected on 3 of the 76 internal BT samples and 73 of the 76 internal ME samples. Internal ME samples with no intervention had significantly higher mean E. coli O157:H7 populations than did those internal samples treated with an intervention, but there were no significant differences in E. coli O157:H7 populations among internal BT samples. Results of this study demonstrate that the incidence of E. coli O157:H7 on the surface of beef subprimal cuts is low and that interventions applied before mechanical tenderization can effectively reduce the transfer of low concentrations of E. coli O157:H7 to the interior of beef subprimal cuts.


Sign in / Sign up

Export Citation Format

Share Document