Inactivation of Escherichia coli in Milk by High-Hydrostatic-Pressure Treatment in Combination with Antimicrobial Peptides

1999 ◽  
Vol 62 (11) ◽  
pp. 1248-1254 ◽  
Author(s):  
CRISTINA GARCÍA-GRAELLS ◽  
BARBARA MASSCHALCK ◽  
CHRIS W. MICHIELS

We studied the inactivation in milk of four Escherichia coli strains (MG1655 and three pressure-resistant mutants isolated from MG1655) by high hydrostatic pressure, alone or in combination with the natural antimicrobial peptides lysozyme and nisin and at different temperatures (10 to 50°C). Compared with that of phosphate buffer, the complex physicochemical environment of milk exerted a strong protective effect on E. coli MG1655 against high-hydrostatic-pressure inactivation, reducing inactivation from 7 logs at 400 MPa to only 3 logs at 700 MPa in 15 min at 20°C. An increase in lethality was achieved by addition of high concentrations of lysozyme (400 μg/ml) and nisin (400 IU/ml) to the milk before pressure treatment. The additional reduction amounted maximally to 3 logs in skim milk at 550 MPa but was strain dependent and significantly reduced in 1.55% fat and whole milk. An increase of the process temperature to 50°C also enhanced inactivation, particularly for the parental strain, but even in the presence of lysozyme and nisin, a 15-min treatment at 550 MPa and 50°C in skim milk allowed decimal reductions of only 4.5 to 6.9 for the pressure-resistant mutants. A substantial improvement of inactivation efficiency at ambient temperature was achieved by application of consecutive, short pressure treatments interrupted by brief decompressions. Interestingly, this pulsed-pressure treatment enhanced the sensitivity of the cells not only to high pressure but also to the action of lysozyme and nisin.

2000 ◽  
Vol 66 (10) ◽  
pp. 4173-4179 ◽  
Author(s):  
Cristina García-Graells ◽  
Caroline Valckx ◽  
Chris W. Michiels

ABSTRACT We have studied inactivation of four strains each ofEscherichia coli and Listeria innocua in milk by the combined use of high hydrostatic pressure and the lactoperoxidase-thiocyanate-hydrogen peroxide system as a potential mild food preservation method. The lactoperoxidase system alone exerted a bacteriostatic effect on both species for at least 24 h at room temperature, but none of the strains was inactivated. Upon high-pressure treatment in the presence of the lactoperoxidase system, different results were obtained for E. coli and L. innocua. For none of the E. coli strains did the lactoperoxidase system increase the inactivation compared to a treatment with high pressure alone. However, a strong synergistic interaction of both treatments was observed for L. innocua. Inactivation exceeding 7 decades was achieved for all strains with a mild treatment (400 MPa, 15 min, 20°C), which in the absence of the lactoperoxidase system caused only 2 to 5 decades of inactivation depending on the strain. Milk as a substrate was found to have a considerable effect protecting E. coli and L. innocua against pressure inactivation and reducing the effectiveness of the lactoperoxidase system under pressure on L. innocua. Time course experiments showed that L. innocua counts continued to decrease in the first hours after pressure treatment in the presence of the lactoperoxidase system.E. coli counts remained constant for at least 24 h, except after treatment at the highest pressure level (600 MPa, 15 min, 20°C), in which case, in the presence of the lactoperoxidase system, a transient decrease was observed, indicating sublethal injury rather than true inactivation.


2007 ◽  
Vol 73 (20) ◽  
pp. 6508-6518 ◽  
Author(s):  
Marwen Moussa ◽  
Jean-Marie Perrier-Cornet ◽  
Patrick Gervais

ABSTRACT The relationship between membrane permeability, changes in ultrastructure, and inactivation in Escherichia coli strain K-12TG1 cells subjected to high hydrostatic pressure treatment at room and subzero temperatures was studied. Propidium iodide staining performed before and after pressure treatment made it possible to distinguish between reversible and irreversible pressure-mediated cell membrane permeabilization. Changes in cell ultrastructure were studied using transmission electron microscopy (TEM), which showed noticeable condensation of nucleoids and aggregation of cytosolic proteins in cells fixed after decompression. A novel technique used to mix fixation reagents with the cell suspension in situ under high hydrostatic pressure (HHP) and subzero-temperature conditions made it possible to show the partial reversibility of pressure-induced nucleoid condensation. However, based on visual examination of TEM micrographs, protein aggregation did not seem to be reversible. Reversible cell membrane permeabilization was noticeable, particularly for HHP treatments at subzero temperature. A correlation between membrane permeabilization and cell inactivation was established, suggesting different mechanisms at room and subzero temperatures. We propose that the inactivation of E. coli cells under combined HHP and subzero temperature occurs mainly during their transiently permeabilized state, whereas HHP inactivation at room temperature is related to a balance of transient and permanent permeabilization. The correlation between TEM results and cell inactivation was not absolute. Further work is required to elucidate the effects of pressure-induced damage on nucleoids and proteins during cell inactivation.


2012 ◽  
Vol 78 (6) ◽  
pp. 2063-2065 ◽  
Author(s):  
Hudaa Neetoo ◽  
Yingjian Lu ◽  
Changqing Wu ◽  
Haiqiang Chen

ABSTRACTGreen onions grown in soil and hydroponic medium contaminated withEscherichia coliO157:H7 andSalmonellawere found to take up the pathogens in their roots, bulbs, stems, and leaves. Pressure treatment at 400 to 500 MPa for 2 min at 20 to 40°C eliminated both pathogens that were internalized within green onions during plant growth.


2005 ◽  
Vol 98 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Isabelle Van Opstal ◽  
Suzy C.M. Vanmuysen ◽  
Elke Y. Wuytack ◽  
Barbara Masschalck ◽  
Chris W. Michiels

2005 ◽  
Vol 71 (5) ◽  
pp. 2226-2231 ◽  
Author(s):  
Abram Aertsen ◽  
Philipp De Spiegeleer ◽  
Kristof Vanoirbeek ◽  
Maria Lavilla ◽  
Chris W. Michiels

ABSTRACT Using leaderless alkaline phosphatase as a probe, it was demonstrated that pressure treatment induces endogenous intracellular oxidative stress in Escherichia coli MG1655. In stationary-phase cells, this oxidative stress increased with the applied pressure at least up to 400 MPa, which is well beyond the pressure at which the cells started to become inactivated (200 MPa). In exponential-phase cells, in contrast, oxidative stress increased with pressure treatment up to 150 MPa and then decreased again, together with the cell counts. Anaerobic incubation after pressure treatment significantly supported the recovery of MG1655, while mutants with increased intrinsic sensitivity toward oxidative stress (katE, katF, oxyR, sodAB, and soxS) were found to be more pressure sensitive than wild-type MG1655. Furthermore, mild pressure treatment strongly sensitized E. coli toward t-butylhydroperoxide and the superoxide generator plumbagin. Finally, previously described pressure-resistant mutants of E. coli MG1655 displayed enhanced resistance toward plumbagin. In one of these mutants, the induction of endogenous oxidative stress upon high hydrostatic pressure treatment was also investigated and found to be much lower than in MG1655. These results suggest that, at least under some conditions, the inactivation of E. coli by high hydrostatic pressure treatment is the consequence of a suicide mechanism involving the induction of an endogenous oxidative burst.


Sign in / Sign up

Export Citation Format

Share Document