Survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in and on Vacuum Packaged Lebanon Bologna Stored at 3.6 and 13.0°C

2001 ◽  
Vol 64 (7) ◽  
pp. 958-963 ◽  
Author(s):  
NAVEEN CHIKTHIMMAH ◽  
STEPHEN J. KNABEL

Escherichia coli O157:H7, Salmonella Typhimurium, or Listeria monocytogenes was spread onto the surface of Lebanon bologna luncheon slices using sterile glass rods. The inoculated slices were stacked and vacuum packaged. The packages were stored at 3.6 or 13°C. The foodborne pathogens, E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes were reduced in Lebanon bologna during storage at 3.6 or 13°C. The higher storage temperature (13.0°C) resulted in significantly faster destruction of E. coli O157:H7 and L. monocytogenes, compared to storage at refrigeration temperature (3.6°C) (P < 0.005). E. coli O157:H7 was the most resistant to destruction among the three foodborne pathogens. A linear destruction of E. coli O157:H7 occurred only after an initial lag period. Storage temperature did not have a significant effect on the rate of destruction of Salmonella Typhimurium. Foodborne pathogens inoculated prior to fermentation did not show any enhanced survival compared to control cells (inoculated after fermentation) during storage of the Lebanon bologna at 3.6°C.

2000 ◽  
Vol 63 (5) ◽  
pp. 608-612 ◽  
Author(s):  
MOHSEN S. ISSA ◽  
ELLIOT T. RYSER

Commercially pasteurized milk (∼2% milkfat) was heated at 85 to 87°C/30 min, inoculated to contain 2,000 to 6,000 CFU/ml of Listeria monocytogenes, Salmonella Typhimurium DT104, or Escherichia coli O157:H7, cultured at 43°C for 4 h with a 2.0% (wt/wt) commercial yogurt starter culture, stored 12 to 14 h at 6°C, and centrifuged to obtain a Labneh-like product. Alternatively, traditional salted and unsalted Labneh was prepared using a 3.0% (wt/wt) starter culture inoculum, similarly inoculated after manufacture with the aforementioned pathogens, and stored at 6°C and 20°C. Throughout fermentation, Listeria populations remained unchanged, whereas numbers of Salmonella increased 0.33 to 0.47 logs during the first 2 h of fermentation and decreased thereafter. E. coli populations increased 0.46 to 1.19 logs during fermentation and remained that these levels during overnight cold storage. When unsalted and salted Labneh were inoculated after manufacture, Salmonella populations decreased >2 logs in all samples after 2 days, regardless of storage temperature, with the pathogen no longer detected in 4-day-old samples. Numbers of L. monocytogenes decreased from 2.48 to 3.70 to <1.00 to 1.95 logs after 2 days with the pathogen persisting up to 15 days in one lot of salted/unsalted Labneh stored at 6°C. E. coli O157:H7 populations decreased from 3.39 to 3.7 to <1.00 to 2.08 logs during the first 2 days, with the pathogen no longer detected in any 4-dayold samples. Inactivation rates for all three pathogens in Labneh were unrelated to storage temperature or salt content. Unlike L. monocytogenes that persisted up to 15 days in Labneh, rapid inactivation of Salmonella Typhimurium DT104 and E. coli O157:H7 suggests that these emerging foodborne pathogens are of less public health concern in traditional Labneh.


2009 ◽  
Vol 72 (2) ◽  
pp. 403-407 ◽  
Author(s):  
RENATA JACOB ◽  
ANNA C. S. PORTO-FETT ◽  
JEFFREY E. CALL ◽  
JOHN B. LUCHANSKY

The behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium on kippered beef was evaluated. Individual pieces of the product were separately inoculated on the top and bottom surfaces with each three- to six-strain pathogen cocktail at ca. 6.0 log CFU per piece and stored at 4, 10, 21, or 30°C for up to 28 days in each of two trials. When kippered beef was inoculated with E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes and stored at 4, 10, 21, or 30°C for up to 28 days, pathogen numbers decreased ca. 0.4 to 0.9, 1.0 to 1.8, 3.0 to ≥5.25, and ≥5.0 to 5.25 log CFU per piece, respectively. Average D-values for E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes stored at4to30°C for 28 days were ca. 41 to 4.6, 40.8 to 5.3, and 29.5 to 4.3 days, respectively. As expected, the higher the storage temperature, the greater the level and rate of inactivation for all three pathogens. These data establish that kippered beef does not provide an environment conducive to proliferation of these pathogens.


2002 ◽  
Vol 65 (1) ◽  
pp. 196-198 ◽  
Author(s):  
C. A. HOOPER-KINDER ◽  
P. M. DAVIDSON ◽  
S. K. DUCKETT

An experiment was conducted to determine the effects of the dark, firm, and dry (DFD) condition of beef on growth of the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium DT104, and Listeria monocytogenes Scott A in ground beef. Longissimus muscles from a DFD carcass (pH = 6.45) and normal carcass (N; pH = 5.64) were ground and samples obtained (100 and 0% DFD, respectively). Equal amounts of the 0 and 100% DFD ground samples were mixed to obtain 50% DFD samples. Inoculated 0, 50, and 100% DFD samples were packaged into oxygen-permeable overwrap and stored at 10°C for E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A or at 22°C for E. coli O157:H7. Growth characteristics of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A did not differ (P > 0.05) between 0 and 100% DFD. Results indicated that the DFD beef used in this study was no more susceptible to growth of E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes Scott A than N beef.


2001 ◽  
Vol 64 (7) ◽  
pp. 950-957 ◽  
Author(s):  
JOHN SAMELIS ◽  
JOHN N. SOFOS ◽  
PATRICIA A. KENDALL ◽  
GARY C. SMITH

Bacterial pathogens may colonize meat plants and increase food safety risks following survival, stress hardening, or proliferation in meat decontamination fluids (washings). The objective of this study was to evaluate the ability of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes to survive or grow in spray-washing fluids from fresh beef top rounds sprayed with water (10 or 85°C) or acid solutions (2% lactic or acetic acid, 55°C) during storage of the washings at 4 or 10°C in air to simulate plant conditions. Inoculated Salmonella Typhimurium DT 104 (5.4 ± 0.1 log CFU/ml) died off in lactate (pH 2.4 ± 0.1) and acetate (pH 3.1 ± 0.2) washings by 2 days at either storage temperature. In contrast, inoculated E. coli O157:H7 (5.2 ± 0.1 log CFU/ml) and L. monocytogenes (5.4 ± 0.1 log CFU/ml) survived in lactate washings for at least 2 days and in acetate washings for at least 7 and 4 days, respectively; their survival was better in acidic washings stored at 4°C than at 10°C. All inoculated pathogens survived in nonacid (pH > 6.0) washings, but their fate was different. E. coli O157:H7 did not grow at either temperature in water washings, whereas Salmonella Typhimurium DT 104 failed to multiply at 4°C but increased by approximately 2 logs at 10°C. L. monocytogenes multiplied (0.6 to 1.3 logs) at both temperatures in water washings. These results indicated that bacterial pathogens may survive for several days in acidic, and proliferate in water, washings of meat, serving as potential cross-contamination sources, if pathogen niches are established in the plant. The responses of surviving pathogens in meat decontamination waste fluids to acid or other stresses need to be addressed to better evaluate potential food safety risks.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2004 ◽  
Vol 67 (5) ◽  
pp. 1014-1016 ◽  
Author(s):  
M. J. CHO ◽  
R. W. BUESCHER ◽  
M. JOHNSON ◽  
M. JANES

The effects of (E,Z)-2,6-nonadienal (NDE) and (E)-2-nonenal (NE) on Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium were investigated. A suspension of each organism of 6 to 9 log CFU/ml was incubated for 1 h at 37° C in brain heart infusion solution that contained 0 to 500 or 1,000 ppm of NDE or NE. Depending on concentration, exposure to either NDE or NE caused a reduction in CFU of each organism. Treatment with 250 and 500 ppm NDE completely eliminated viable B. cereus and Salmonella Typhimurium cells, respectively. L. monocytogenes was the most resistant to NDE, showing only about a 2-log reduction from exposure to 500 ppm for 1 h. Conversely, this concentration of NDE caused a 5.8-log reduction in E. coli O157:H7 cells. NE was also effective in inactivating organisms listed above. A higher concentration of NE, 1,000 ppm, was required to kill E. coli O157:H7, L. monocytogenes, or Salmonella Typhimurium compared with NDE. In conclusion, both NDE and NE demonstrated an apparent bactericidal activity against these pathogens.


1999 ◽  
Vol 62 (8) ◽  
pp. 857-860 ◽  
Author(s):  
KUMAR S. VENKITANARAYANAN ◽  
GABRIEL O. I. EZEIKE ◽  
YEN-CON HUNG ◽  
MICHAEL P. DOYLE

One milliliter of culture containing a five-strain mixture of Escherichia coli O157:H7 (∼1010 CFU) was inoculated on a 100-cm2 area marked on unscarred cutting boards. Following inoculation, the boards were air-dried under a laminar flow hood for 1 h, immersed in 2 liters of electrolyzed oxidizing water or sterile deionized water at 23°C or 35°C for 10 or 20 min; 45°C for 5 or 10 min; or 55°C for 5 min. After each temperature–time combination, the surviving population of the pathogen on cutting boards and in soaking water was determined. Soaking of inoculated cutting boards in electrolyzed oxidizing water reduced E. coli O157:H7 populations by ≥5.0 log CFU/100 cm2 on cutting boards. However, immersion of cutting boards in deionized water decreased the pathogen count only by 1.0 to 1.5 log CFU/100 cm2. Treatment of cutting boards inoculated with Listeria monocytogenes in electrolyzed oxidizing water at selected temperature–time combinations (23°C for 20 min, 35°C for 10 min, and 45°C for 10 min) substantially reduced the populations of L. monocytogenes in comparison to the counts recovered from the boards immersed in deionized water. E. coli O157:H7 and L. monocytogenes were not detected in electrolyzed oxidizing water after soaking treatment, whereas the pathogens survived in the deionized water used for soaking the cutting boards. This study revealed that immersion of kitchen cutting boards in electrolyzed oxidizing water could be used as an effective method for inactivating foodborne pathogens on smooth, plastic cutting boards.


2003 ◽  
Vol 66 (4) ◽  
pp. 549-558 ◽  
Author(s):  
SARAH L. HOLLIDAY ◽  
LARRY R. BEUCHAT

A study was conducted to characterize the survival and inactivation kinetics of a five-serotype mixture of Salmonella (6.23 to 6.55 log10 CFU per 3.5-ml or 4-g sample), a five-strain mixture of Escherichia coli O157:H7 (5.36 to 6.14 log10 CFU per 3.5-ml or 4-g sample), and a six-strain mixture of Listeria monocytogenes (5.91 to 6.18 log10 CFU per 3.5-ml or 4-g sample) inoculated into seven yellow fat spreads (one margarine, one butter-margarine blend, and five dairy and nondairy spreads and toppings) after formulation and processing and stored at 4.4, 10, and 21°C for up to 94 days. Neither Salmonella nor E. coli O157:H7 grew in any of the test products. The time required for the elimination of each pathogen depended on the product and the storage temperature. Death was more rapid at 21°C than at 4.4 or 10°C. Depending on the product, the time required for the elimination of viable cells at 21°C ranged from 5 to 7 days to >94 days for Salmonella, from 3 to 5 days to 28 to 42 days for E. coli O157:H7, and from 10 to 14 days to >94 days for L. monocytogenes. Death was most rapid in a water-continuous spray product (pH 3.66, 4.12% salt) and least rapid in a butter-margarine blend (pH 6.66, 1.88% salt). E. coli O157:H7 died more rapidly than did Salmonella or L. monocytogenes regardless of storage temperature. Salmonella survived longer in high-fat (≥61%) products than in products with lower fat contents. The inhibition of growth is attributed to factors such as acidic pH, salt content, the presence of preservatives, emulsion characteristics, and nutrient deprivation. L. monocytogenes did not grow in six of the test products, but its population increased between 42 and 63 days in a butter-margarine blend stored at 10°C and between 3 and 7 days when the blend was stored at 21°C. On the basis of the experimental parameters examined in this study, traditional margarine and spreads not containing butter are not “potentially hazardous foods” in that they do not support the growth of Salmonella, E. coli O157:H7, or L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document