Preparation-Free Method for Detecting Escherichia coli O157:H7 in the Presence of Spinach, Spring Lettuce Mix, and Ground Beef Particulates

2007 ◽  
Vol 70 (11) ◽  
pp. 2651-2655 ◽  
Author(s):  
DAVID MARALDO ◽  
RAJ MUTHARASAN

We show the detection of 100 cells per ml of Escherichia coli O157:H7 in the presence of spinach, spring lettuce mix, and ground beef washes and particulate matter with piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. The PEMC sensors (sensing area, 2 mm2) were immobilized with polyclonal antibody specific to E. coli O157:H7 (EC) and were exposed to 10 aqueous washes of locally purchased spinach, spring lettuce mix, and ground beef for testing if EC was present. Absence of resonance frequency shift indicated that EC was not present in the 30 samples tested. Following the last sample in each food matrix, 1,000 cells per ml of EC were spiked into the sample container, and resonance frequency change was monitored. The total resonance frequency change was 880 ± 5, 1,875 ± 8, and 1,417 ± 4 Hz for spinach, spring lettuce mix, and ground beef, respectively. A mixture of the three food matrices spiked with 100 cells per ml of EC gave a sensor response of 260 ± 15 Hz. The resonance frequency changes are approximately 40% lower than our previously reported study on ground beef. It is suggested that the reduction in sensitivity is due to differences in pathogen adherence to food matrices, which affects target binding to the sensor surface. We conclude that detection selectivity is conserved in the three food matrices examined and that the magnitude of sensor response is a function of the food matrix.

2007 ◽  
Vol 70 (7) ◽  
pp. 1670-1677 ◽  
Author(s):  
DAVID MARALDO ◽  
RAJ MUTHARASAN

We detected Escherichia coli O157:H7 (EC) at approximately 10 cells per ml in spiked ground beef samples in 10 min using piezoelectric-excited millimeter-size cantilever (PEMC) sensors. The composite PEMC sensors have a sensing area of 2mm2 and are prepared by immobilizing a polyclonal antibody specific to EC on the sensing surface. Ground beef (2.5 g) was spiked with EC at 10 to 10,000 cells per ml in phosphate-buffered saline (PBS). One milliliter of supernatant was removed from the blended samples and used to perform the detection experiments. The total resonant frequency change obtained for the inoculated samples was 138 ± 9, 735 ± 23, 2,603 ± 51, and 7,184 ± 606 Hz, corresponding to EC concentrations of 10, 100, 1,000, and 10,000 cells per ml, respectively. EC was detected in the sample solution within the first 10 min. The responses of the sensor to positive, negative, and buffer controls were 36 ± 6, 27 ± 2, and 2 ± 7 Hz, respectively. Verification of EC attachment was confirmed by low-pH buffer release (PBS-HCl, pH 2.2), microscopy, and second antibody EC binding postdetection. The results indicate that PEMC sensors can reliably detect EC at less than 10 cells per ml in 10 min without sample preparation and with label-free reagents.


Food Control ◽  
2009 ◽  
Vol 20 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Belgin Sarimehmetoglu ◽  
Mihriban Hatun Aksoy ◽  
Naim Deniz Ayaz ◽  
Yildiz Ayaz ◽  
Ozlem Kuplulu ◽  
...  

1977 ◽  
Vol 55 (17) ◽  
pp. 1499-1509 ◽  
Author(s):  
S. Schneider ◽  
R. Spitzer

The interaction in a frequency-dispersive medium of a coherent electromagnetic wave with an electron moving faster than a critical (Mach) speed produces electromagnetic radiation with novel characteristics. Theory predicts emission of intense radiation in the form of shock fronts at specific angles from the electron trajectory. The shock fronts are correlated with specific frequencies shifted significantly from that of the incident wave. We have named this effect stimulated electromagnetic shock radiation (SESR). The shock frequencies depend dynamically on the populations of the energy levels that give rise to the medium resonances. A given shock frequency changes from below to above the resonance frequency of the medium with which it is associated as the populations of the two energy levels corresponding to this resonance frequency change from an equilibrium distribution to an inverted one. This dynamic resonance crossing points to the possibility of new synergisms between SESR emission and stimulated emission between discrete levels.


2006 ◽  
Vol 69 (8) ◽  
pp. 1978-1982 ◽  
Author(s):  
J. E. MANN ◽  
M. M. BRASHEARS

In order to provide beef processors with valuable data to validate critical limits set for temperature during grinding, a study was conducted to determine Escherichia coli O157:H7 growth at various temperatures in raw ground beef. Fresh ground beef samples were inoculated with a cocktail mixture of streptomycin-resistant E. coli O157:H7 to facilitate recovery in the presence of background flora. Samples were held at 4.4, 7.2, and 10°C, and at room temperature (22.2 to 23.3°C) to mimic typical processing and holding temperatures observed in meat processing environments. E. coli O157:H7 counts were determined by direct plating onto tryptic soy agar with streptomycin (1,000 μg/ml), at 2-h intervals over 12 h for samples held at room temperature. Samples held under refrigeration temperatures were sampled at 4, 8, 12, 24, 48, and 72 h. Less than one log of E. coli O157:H7 growth was observed at 48 h for samples held at 10°C. Samples held at 4.4 and 7.2°C showed less than one log of E. coli O157:H7 growth at 72 h. Samples held at room temperature showed no significant increase in E. coli O157:H7 counts for the first 6 h, but increased significantly afterwards. These results illustrate that meat processors can utilize a variety of time and temperature combinations as critical limits in their hazard analysis critical control point plans to minimize E. coli O157:H7 growth during the production and storage of ground beef.


1997 ◽  
Vol 60 (5) ◽  
pp. 471-475 ◽  
Author(s):  
ALICIA ORTA-RAMIREZ ◽  
JAMES F. PRICE ◽  
YIH-CHIH HSU ◽  
GIRIDARAN J. VEERAMUTHU ◽  
JAMIE S. CHERRY-MERRITT ◽  
...  

The USDA has established processing schedules for beef products based on the destruction of pathogens. Several enzymes have been suggested as potential indicators of heat processing. However, no relationship between the inactivation rates of these enzymes and those of pathogenic microorganisms has been determined. Our objective was to compare the thermal inactivation of Escherichia coli O157:H7 and Salmonella senftenberg to those of endogenous muscle proteins. Inoculated and noninoculated ground beef samples were heated at four temperatures for predetermined intervals of time in thermal-death-time studies. Bacterial counts were determined and enzymes were assayed for residual activity. The D values for E. coli O157:H7 were 46.10, 6.44, 0.43, and 0.12 min at 53, 58, 63, and 68°C, respectively, with a z value of 5.60°C. The D values for S. senftenberg were 53.00, 15.17, 2.08, and 0.22 min at 53, 58, 63, and 68°C, respectively, with a z value of 6.24°C. Apparent D values at 53, 58, 63, and 68°C were 352.93, 26.31, 5.56, and 3.33 min for acid phosphatase; 6968.64, 543.48, 19.61, and 1.40 min for lactate dehydrogenase; and 3870.97, 2678.59, 769.23, and 42.92 min for peroxidase; with z values of 7.41,3.99, and 7.80°C, respectively. Apparent D values at 53, 58, 63, and 66°C were 325.03, 60.07, 3.07, and 1.34 min for phosphoglycerate mutase; 606.72, 89.86, 4.40, and 1.28 min for glyceraldehyde-3-phosphate dehydrogenase; and 153.06, 20.13, 2.25, and 0.74 min for triose phosphate isomerase; with z values of 5.18, 4.71, and 5.56°C, respectively. The temperature dependence of triose phosphate isomerase was similar to those of both E. coli O157 :H7 and S. senftenberg, suggesting that this enzyme could be used as an endogenous time-temperature indicator in beef products.


2004 ◽  
Vol 67 (3) ◽  
pp. 591-595 ◽  
Author(s):  
LARRY R. BEUCHAT ◽  
ALAN J. SCOUTEN

The effects of lactic acid, acetic acid, and acidic calcium sulfate (ACS) on viability and subsequent acid tolerance of three strains of Escherichia coli O157:H7 were determined. Differences in tolerance to acidic environments were observed among strains, but the level of tolerance was not affected by the acidulant to which cells had been exposed. Cells of E. coli O157:H7 adapted to grow on tryptic soy agar acidified to pH 4.5 with ACS were compared to cells grown at pH 7.2 in the absence of ACS for their ability to survive after inoculation into ground beef treated with ACS, as well as untreated beef. The number of ACS-adapted cells recovered from ACS-treated beef was significantly (α = 0.05) higher than the number of control cells recovered from ACS-treated beef during the first 3 days of a 10-day storage period at 4°C, suggesting that ACS-adapted cells might be initially more tolerant than unadapted cells to reduced pH in ACS-treated beef. Regardless of treatment of ground beef with ACS or adaptation of E. coli O157:H7 to ACS before inoculating ground beef, the pathogen survived in high numbers.


2007 ◽  
Vol 584 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Lisa C. Shriver-Lake ◽  
Stephanie Turner ◽  
Chris R. Taitt

2007 ◽  
Vol 70 (10) ◽  
pp. 2230-2234 ◽  
Author(s):  
T. W. THOMPSON ◽  
T. P. STEPHENS ◽  
G. H. LONERAGAN ◽  
M. F. MILLER ◽  
M. M. BRASHEARS

Rapid enzyme-linked immunosorbent assays (ELISAs) are approved for detection of Escherichia coli O157 in beef products. However, these kits have also been used in the industry to detect this pathogen on hides or in feces of cattle, although this use has not been validated. The objective of this study was to compare commercially available ELISAs (E. coli Now, Reveal, and VIP) with immunomagnetic separation along with selective media to detect E. coli O157 on hides, in feces, and in medium- and low-level-inoculated ground beef and carcasses (simulated by using briskets) samples. Naturally infected hide and fecal samples were subjected to both the immunomagnetic separation method and ELISAs for the detection of E. coli O157. Additionally, E. coli O157 inoculated and noninoculated ground beef and beef briskets were used to simulate meat and carcass samples. When comparing the detection results from the ELISAs (E. coli Now, Reveal, and VIP) to the immunomagnetic separation method, poor agreement was observed for fecal samples (kappa = 0.10, 0.02, and 0.03 for E. coli Now, Reveal, and VIP, respectively), and fair-to-moderate agreement was observed for hide samples (kappa = 0.30, 0.51, and 0.29 for E. coli Now, Reveal, and VIP, respectively). However, there was near-perfect agreement between the immunomagnetic separation method and ELISAs for ground beef (kappa = 1, 1, and 0.80 for E. coli Now, Reveal, and VIP, respectively) and brisket (kappa = 1, 1, and 1 for E. coli Now, Reveal, and VIP, respectively) samples. Assuming immunomagnetic separation is the best available method, these data suggest that the ELISAs are not useful in detecting E. coli O157 from hide or fecal samples. However, when ELISAs are used on ground beef and beef brisket samples they can be used with a high degree of confidence.


Sign in / Sign up

Export Citation Format

Share Document