Soil versus Pond Ash Surfacing of Feedlot Pens: Occurrence of Escherichia coli O157:H7 in Cattle and Persistence in Manure†

2010 ◽  
Vol 73 (7) ◽  
pp. 1269-1277 ◽  
Author(s):  
ELAINE D. BERRY ◽  
JAMES E. WELLS ◽  
TERRANCE M. ARTHUR ◽  
BRYAN L. WOODBURY ◽  
JOHN A. NIENABER ◽  
...  

Reducing Escherichia coli O157:H7 in cattle and their manure is critical for reducing the risk for human foodborne and waterborne illness. The objective of this study was to evaluate the effects of soil and pond ash surfaces for feedlot pens on the prevalence, levels, and/or persistence of naturally occurring E. coli O157:H7 and total E. coli in cattle (feces and hides) and manure. Cattle (128 beef heifers) were sorted among 16 pens: 8 surfaced with soil and 8 surfaced with pond ash. The prevalence of E. coli O157:H7 in feces decreased (P < 0.0001) during the study from 57.0% on day 0 to 3.9% on day 84 but did not differ (P ≥ 0.05) between cattle on soil and on pond ash pens at any sampling period. The prevalence of the pathogen on hides and in feedlot surface material (FSM) also decreased (P < 0.0001), with no effect of soil or pond ash surface (P ≥ 0.05). Similarly, levels of E. coli in FSM did not differ (P ≥ 0.05) at any sampling period, and there were no clear trends for survival differences of E. coli O157:H7 or E. coli in FSM between pond ash and soil surfaces, although E. coli populations survived at 5.0 log CFU/g of FSM on the pen surfaces 6 weeks after the cattle were removed. These results indicate that housing cattle on pens surfaced with pond ash versus pens surfaced with soil does not affect E. coli O157:H7 in cattle or their manure.

2006 ◽  
Vol 69 (1) ◽  
pp. 6-11 ◽  
Author(s):  
L. SCOTT ◽  
P. McGEE ◽  
J. J. SHERIDAN ◽  
B. EARLEY ◽  
N. LEONARD

Escherichia coli O157:H7 is an important foodborne pathogen that can cause hemorrhagic colitis and hemolytic uremic syndrome. Cattle feces and fecally contaminated water are important in the transmission of this organism on the farm. In this study, the survival of E. coli O157:H7 in feces and water was compared following passage through the animal digestive tract or preparation in the laboratory. Feces were collected from steers before and after oral inoculation with a marked strain of E. coli O157:H7. Fecal samples collected before cattle inoculation were subsequently inoculated with the marked strain of E. coli O157:H7 prepared in the laboratory. Subsamples were taken from both animal and laboratory-inoculated feces to inoculate 5-liter volumes of water. E. coli O157:H7 in feces survived up to 97 days, and survival was not affected by the method used to prepare the inoculating strain. E. coli O157:H7 survived up to 109 days in water, and the bacteria collected from inoculated cattle were detected up to 10 weeks longer than the laboratory-prepared culture. This study suggests that pathogen survival in low-nutrient conditions may be enhanced by passage through the gastrointestinal tract.


2014 ◽  
Vol 77 (2) ◽  
pp. 314-319 ◽  
Author(s):  
M. E. JACOB ◽  
J. BAI ◽  
D. G. RENTER ◽  
A. T. ROGERS ◽  
X. SHI ◽  
...  

Detection of Escherichia coli O157 in cattle feces has traditionally used culture-based methods; PCR-based methods have been suggested as an alternative. We aimed to determine if multiplex real-time (mq) or conventional PCR methods could reliably detect cattle naturally shedding high (≥104 CFU/g of feces) and low (~102 CFU/g of feces) concentrations of E. coli O157. Feces were collected from pens of feedlot cattle and evaluated for E. coli O157 by culture methods. Samples were categorized as (i) high shedders, (ii) immunomagnetic separation (IMS) positive after enrichment, or (iii) culture negative. DNA was extracted pre- and postenrichment from 100 fecal samples from each category (high shedder, IMS positive, culture negative) and subjected to mqPCR and conventional PCR assays based on detecting three genes, rfbE, stx1, and stx2. In feces from cattle determined to be E. coli O157 high shedders by culture, 37% were positive by mqPCR prior to enrichment; 85% of samples were positive after enrichment. In IMS-positive samples, 4% were positive by mqPCR prior to enrichment, while 43% were positive after enrichment. In culture-negative feces, 7% were positive by mqPCR prior to enrichment, and 40% were positive after enrichment. The proportion of high shedder–positive and culture-positive (high shedder and IMS) samples were significantly different from mqPCR-positive samples before and after enrichment (P < 0.01). Similar results were observed for conventional PCR. Our data suggest that mqPCR and conventional PCR are most useful in identifying high shedder animals and may not be an appropriate substitute to culture-based methods for detection of E. coli O157 in cattle feces.


2013 ◽  
Vol 76 (8) ◽  
pp. 1308-1321 ◽  
Author(s):  
ELAINE D. BERRY ◽  
PATRICIA D. MILLNER ◽  
JAMES E. WELLS ◽  
NORASAK KALCHAYANAND ◽  
MICHAEL N. GUERINI

Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bovine manure composting processes. Feedlot pen samples were screened to identify E. coli O157:H7–positive manure. Using this manure, four piles of each of three different composting formats were constructed in each of two replicate trials. Composting formats were (i) turned piles of manure plus hay and straw, (ii) static stockpiles of manure, and (iii) static piles of covered manure plus hay and straw. Temperatures in the tops, toes, and centers of the conical piles (ca. 6.0 m3 each) were monitored. Compost piles that were turned every 2 weeks achieved higher temperatures for longer periods in the tops and centers than did piles that were left static. E. coli O157:H7 was not recovered from top samples of turned piles of manure plus hay and straw at day 28 and beyond, but top samples from static piles were positive for the pathogen up to day 42 (static manure stockpiles) and day 56 (static covered piles of manure plus hay and straw). Salmonella, Campylobacter spp., and Listeria monocytogenes were not found in top or toe samples at the end of the composting period, but E. coli O157:H7 and Listeria spp. were recovered from toe samples at day 84. Our findings indicate that some minimally managed composting processes can reduce E. coli O157:H7 and other pathogens in bovine manure but may be affected by season and/or initial levels of indigenous thermophilic bacteria. Our results also highlight the importance of adequate C:N formulation of initial mixtures for the production of high temperatures and rapid composting, and the need for periodic turning of the piles to increase the likelihood that all parts of the mass are subjected to high temperatures.


2015 ◽  
Vol 78 (10) ◽  
pp. 1812-1818 ◽  
Author(s):  
HUSSNI O. MOHAMMED ◽  
KORANA STIPETIC ◽  
AHMED SALEM ◽  
PATRICK McDONOUGH ◽  
YUNG FU CHANG ◽  
...  

Escherichia coli O157:H7, non-O157 E. coli, and Campylobacter spp. are among the top-ranked pathogens that threaten the safety of food supply systems around the world. The associated risks and predisposing factors were investigated in a dynamic animal population using a repeat-cross-sectional study design. Animal and environmental samples were collected from dairy and camel farms, chicken processing plants, and abattoirs and analyzed for the presence of these pathogens using a combination of bacterial enrichment and real-time PCR tests without culture confirmation. Data on putative risk factors were also collected and analyzed. E. coli O157:H7 was detected by PCR at higher levels in sheep and camel feces than in cattle feces (odds ratios [OR], 6.8 and 21.1, respectively). Although the genes indicating E. coli O157:H7 were detected at a relatively higher rate (4.3%) in fecal samples from dairy cattle, they were less common in milk and udder swabs from the same animals (1 and 2%, respectively). Among the food adulterants, E. coli O103 was more common in cattle fecal samples, whereas O26 was more common in sheep feces and O45 in camel feces compared with cattle (OR, 2.6 and 3.1, respectively). The occurrence of E. coli in the targeted populations differed by the type of sample and season of the year. Campylobacter jejuni and Campylobacter coli were more common in sheep and camel feces than in cattle feces. Most of the survey and surveillance of E. coli focused on serogroup O157 as a potential foodborne hazard; however, based on the PCR results, non-O157 Shiga toxin–producing E. coli serotypes appeared to be more common, and efforts should be made to include them in food safety programs.


2006 ◽  
Vol 69 (12) ◽  
pp. 3018-3020 ◽  
Author(s):  
M. J. ALAM ◽  
L. ZUREK

Cattle are an asymptomatic reservoir of Escherichia coli O157:H7, but the bacterial colonization and shedding patterns are poorly understood. The prevalence and shedding of this human pathogen have been reported to be seasonal with rates typically increasing during warm months. The objectives of this study were (i) to assess the prevalence of E. coli O157:H7 in feces of feedlot cattle in Kansas during summer, fall, and winter months, and (ii) to characterize E. coli O157:H7 by screening for virulence factors. Of 891 fecal samples collected, 82 (9.2%) were positive for E. coli O157:H7. No significant differences in prevalence were detected among summer, fall, and winter months. The highest monthly prevalence (18.1%) was detected in February. All tested isolates were positive for stx2 (Shiga toxin 2) and eaeA (intimin) genes; 14 isolates (12.8%) also carried stx1. Our results indicate the prevalence of E. coli O157:H7 in beef cattle feces is not necessarily season dependent.


2003 ◽  
Vol 228 (4) ◽  
pp. 365-369 ◽  
Author(s):  
Brandolyn H. Thran ◽  
Hussein S. Hussein ◽  
Doug Redelman ◽  
George C.J. Fernandez

The pH (i.e., 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, and 7.25) effect on Escherichia coli O157:H7 in an artificial rumen model was investigated. Eight fermenters were inoculated with bovine rumen fluid and were supplied with a diet (75 g of dry matter daily in 12 equal portions [every 2 hr]) containing similar forage-to-concentrate ratio. After an adaptation period (i.e., 3 days for adjusting the rumen fluid [pH 6.2] microbial population to the test pH and 4 days for adjustment to the diet at the test pH), each fermenter was inoculated with 109 cells of E. coli O157:H7. Samples were collected hourly for 12 hr and every 2 hr for an additional 12 hr and were analyzed by flow cytometer. E. coli O157:H7 could not be quantified after 24 hr, and detection was only possible after enrichment. Because the pathogen could not be detected 5 days postinoculation (i.e., Day 13), the fermenters were reinoculated with E. coli O157:H7 on Days 17 and 22. E. coli O157:H7 numbers decreased from 106 to 104/ml of fermenter contents in a quadratic ( P < 0.05) fashion over the 24-hr sampling period, and the rate of reduction was slower ( P < 0.05) for pH 7.0 than for other pH treatments. Results suggested that E. coli O157:H7 population were decreased by competitive exclusion and were not affected by culture pH.


2002 ◽  
Vol 65 (7) ◽  
pp. 1075-1080 ◽  
Author(s):  
M. E. JANES ◽  
T. COBBS ◽  
S. KOOSHESH ◽  
M. G. JOHNSON

Differences in survival and growth among five different Escherichia coli O157:H7 strains in three apple varieties were determined at various temperatures. Jonathan, Golden Delicious, and Red Delicious apples were wounded and inoculated with E. coli O157:H7 strains C7929 (apple cider isolate), 301C (chicken isolate), 204P (pork isolate), 933 (beef isolate), and 43890 (human isolate) at an initial level of 6 to 7 log CFU/g. The inoculated apples were stored at a constant temperature of 37, 25, 8, or 4°C or at 37°C for 24 h and then at 4°C, and bacterial counts were determined every week for 28 days. By day 28, for Jonathan apples at 25°C, the apple isolate counts were significantly higher than the chicken and human isolate counts. At 4°C for 28 days, the human isolate inoculated into Jonathan, Golden Delicious, and Red Delicious apples was present in significantly smaller numbers than the other strains. The apple isolate survived significantly better at 4°C, yielding the highest number of viable cells. By days 21 and 28, for apples stored at 37°C for the first 24 h and then at 4°C, the counts of viable E. coli O157: H7 apple and human isolates were 6.8 and 5.8 log CFU/g at the site of the wound, whereas for apples kept at 4°C for the duration of storage, the respective counts were 5.6 and 1.5 log CFU/g. Our study shows that E. coli O157:H7 strains responded differentially to their ability to survive in these three apple varieties at 25 or 4°C and produced higher viable counts when apples were temperature abused at 37°C for 24 h and then stored at 4°C for 27 days.


2018 ◽  
Vol 81 (7) ◽  
pp. 1157-1164 ◽  
Author(s):  
LANCE W. NOLL ◽  
RACHEL CHALL ◽  
PRAGATHI B. SHRIDHAR ◽  
XUMING LIU ◽  
JIANFA BAI ◽  
...  

ABSTRACT Several real-time quantitative PCR (qPCR) assays have been developed for detection and quantification of Escherichia coli O157:H7 in complex matrices by targeting genes for serogroup-specific O-antigen (rfbEO157), H7 antigen, and one or more major virulence factors (Shiga toxin and intimin). A major limitation of such assays is that coamplification of H7 and virulence genes in a sample does not signal association of those genes with the O157 serogroup. Clusters of regularly interspaced short palindromic repeats (CRISPR) polymorphisms are highly correlated with certain enterohemorrhagic E. coli (EHEC) serotypes, including O157:H7, and the presence of genes for Shiga toxin (stx1 and stx2) and intimin (eae). Our objectives were to develop and validate a qPCR assay targeting the CRISPR array for the detection and quantification of EHEC O157:H7 in cattle feces and to evaluate the applicability of the assay for detection of and comparison with a four-plex qPCR assay targeting rfbEO157, stx1, stx2, and eae genes and a culture method. Detection limits of the CRISPRO157:H7 qPCR assay for cattle feces spiked with pure cultures were 2.1 × 103 and 2.3 × 100 CFU/g before and after enrichment, respectively. Detection of E. coli O157 in feedlot cattle fecal samples (n = 576) was compared among the CRISPRO157:H7 qPCR assay, culture method, and four-plex qPCR assay. The CRISPRO157:H7 qPCR detected 42.2% of the samples (243 of 576 samples) as positive for E. coli O157:H7, compared with 30.4% (175 samples) by the culture method. Nearly all samples (97.2%; 560 samples) were positive for rfbEO157 by the four-plex PCR, but 21.8% (122 of 560 samples) were negative for the stx and/or eae genes, making it unlikely that EHEC O157:H7 was present in these samples. Cohen's kappa statistic indicated a fair and poor agreement beyond that due to chance between the CRISPR assay and the culture method and four-plex assay, respectively. This novel qPCR assay can detect the EHEC O157:H7 serotype in cattle feces by targeting CRISPR polymorphisms.


2012 ◽  
Vol 75 (1) ◽  
pp. 7-13 ◽  
Author(s):  
ELAINE D. BERRY ◽  
JAMES E. WELLS

Feedlot pen soil is a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM). A feedlot pen was identified in which naturally occurring E. coli O157:H7 was prevalent and evenly distributed in the FSM. Forty plots 3 by 3 m were randomly assigned such that five plots of each of the solarization times of 0, 1, 2, 3, 4, 6, 8, and 10 weeks were examined. Temperature loggers were placed 7.5 cm below the surface of each plot, and plots to be solarized were covered with clear 6-mil polyethylene. At each sampling time, five FSM samples were collected from each of five solarized and five unsolarized plots. E. coli concentrations and E. coli O157:H7 presence by immunomagnetic separation and plating were determined for each FSM sample. Initial percentages of E. coli O157:H7–positive samples in control and solarized FSM were 84 and 80%, respectively, and did not differ (P &gt; 0.05). E. coli O157:H7 was no longer detectable by 8 weeks of solarization, but was still detected in unsolarized FSM at 10 weeks. The average initial concentration of E. coli in FSM was 5.56 log CFU/g and did not differ between treatments (P &gt; 0.05). There was a 2.0-log decrease of E. coli after 1 week of solarization, and a &gt;3.0-log reduction of E. coli by week 6 of solarization (P &lt; 0.05). E. coli levels remained unchanged in unsolarized FSM (P &gt; 0.05). Daily peak FSM temperatures were on average 8.7°C higher for solarized FSM compared with unsolarized FSM, and reached temperatures as high as 57°C. Because soil solarization reduces E. coli O157:H7, this technique may be useful for reduction of persistence and transmission of this pathogen in cattle production, in addition to remediation of E. coli O157:H7–contaminated soil used to grow food crops.


2004 ◽  
Vol 67 (8) ◽  
pp. 1574-1577 ◽  
Author(s):  
HUI WANG ◽  
CHERYLL A. REITMEIER ◽  
BONITA A. GLATZ

Two Escherichia coli O157:H7 strains, SEA 13 B88 gfp 73ec and B6-914 gfp 90ec, together with two bacteria, three yeasts, and two molds that were randomly selected from a collection of microorganisms found on apples or in apple cider, were inoculated into apple cider and subjected to electron beam irradiation at several doses between 0.0 and 2.3 kGy at the Iowa State University Linear Accelerator Facility. The D-values for the E. coli O157:H7 strains ranged between 0.25 and 0.34 kGy; the D-values for most of the normal flora from apples ranged between 0.24 and 0.59 kGy. By taking into account possible variations in treatment conditions, it was calculated that irradiation at 2.47 kGy should achieve a 5-log reduction of E. coli O157:H7 in apple cider at the 95% confidence level. Naturally occurring yeasts might survive such irradiation treatment.


Sign in / Sign up

Export Citation Format

Share Document