Oral Delivery Systems for Encapsulated Bacteriophages Targeted at Escherichia coli O157:H7 in Feedlot Cattle

2010 ◽  
Vol 73 (7) ◽  
pp. 1304-1312 ◽  
Author(s):  
K. STANFORD ◽  
T. A. McALLISTER ◽  
Y. D. NIU ◽  
T. P. STEPHENS ◽  
A. MAZZOCCO ◽  
...  

Bacteriophages are natural predators of bacteria and may mitigate Escherichia coli O157:H7 in cattle and their environment. As bacteriophages targeted to E. coli O157:H7 (phages) lose activity at low pH, protection from gastric acidity may enhance efficacy of orally administered phages. Polymer encapsulation of four phages, wV8, rV5, wV7, and wV11, and exposure to pH 3.0 for 20 min resulted in an average 13.6% recovery of phages after release from encapsulation at pH 7.2. In contrast, untreated phages under similar conditions had a complete loss of activity. Steers (n = 24) received 1011 CFU of naladixic acid–resistant E. coli O157:H7 on day 0 and were housed in six pens of four steers. Two pens were control (naladixic acid–resistant E. coli O157:H7 only), and the remaining pens received polymer-encapsulated phages (Ephage) on days −1, 1, 3, 6, and 8. Two pens received Ephage orally in gelatin capsules (bolus; 1010 PFU per steer per day), and the remaining two pens received Ephage top-dressed on their feed (feed; estimated 1011 PFU per steer per day). Shedding of E. coli O157:H7 was monitored for 10 weeks by collecting fecal grab and hide swab samples. Acceptable activity of mixed phages at delivery to steers was found for bolus and feed, averaging 1.82 and 1.13 × 109 PFU/g, respectively. However, Ephage did not reduce shedding of naladixic acid–resistant E. coli O157:H7, although duration of shedding was reduced by 14 days (P < 0.1) in bolus-fed steers as compared with control steers. Two successful systems for delivery of Ephage were developed, but a better understanding of phage–E. coli O157:H7 ecology is required to make phage therapy a viable strategy for mitigation of this organism in feedlot cattle.

2005 ◽  
Vol 68 (1) ◽  
pp. 26-33 ◽  
Author(s):  
K. STANFORD ◽  
S. J. BACH ◽  
T. H. MARX ◽  
S. JONES ◽  
J. R. HANSEN ◽  
...  

On-farm methods of monitoring Escherichia coli O157:H7 were assessed in 30 experimentally inoculated steers housed in four pens over a 12-week period and in 202,878 naturally colonized feedlot cattle housed in 1,160 pens on four commercial Alberta feedlots over a 1-year period. In the challenge study, yearling steers were experimentally inoculated with 1010 CFU of a four-strain mixture of nalidixic acid–resistant E. coli O157:H7. After inoculation, shedding of E. coli O157:H7 was monitored weekly by collecting rectal fecal samples (FEC), oral swabs (ORL), pooled fecal pats (PAT), manila ropes (ROP) orally accessed for 4 h, feed samples, water, and water bowl interface. Collection of FEC from all animals per pen provided superior isolation (P < 0.01) of E. coli O157:H7 compared with other methods, although labor and animal restraint requirements for fecal sample collection were high. When one sample was collected per pen of animals, E. coli O157:H7 was more likely to be detected from the ROP than from the FEC, PAT, or ORL (P < 0.001). In the commercial feedlot study, samples were limited to ROP and PAT, and E. coli O157:H7 was isolated in 18.8% of PAT and 6.8% of ROP samples. However, for animals that had been resident in the feedlot pen for at least 1 month, isolation of E. coli O157:H7 from ROP was not different from that from PAT (P = 0.35). Pens of animals on feed for <30 days were six times more likely to shed E. coli O157:H7 than were animals on feed for >30 days. However, change in diet did not affect shedding of the organism (P > 0.23) provided that animals had acclimated to the feedlot for 1 month or longer. Findings from this study indicate the importance of introduction of mitigation strategies early in the feeding period to reduce transference and the degree to which E. coli O157:H7 is shed into the environment.


2005 ◽  
Vol 68 (8) ◽  
pp. 1724-1728 ◽  
Author(s):  
M. L. KHAITSA ◽  
M. L. BAUER ◽  
P. S. GIBBS ◽  
G. P. LARDY ◽  
D. DOETKOTT ◽  
...  

Two sampling methods (rectoanal swabs and rectal fecal grabs) were compared for their recovery of Escherichia coli O157:H7 from feedlot cattle. Samples were collected from 144 steers four times during the finishing period by swabbing the rectoanal mucosa with cotton swabs and immediately obtaining feces from the rectum of each individual steer. The number of steers with detectable E. coli O157:H7 increased from 2 of 144 (1.4%) cattle on arrival at the feedlot to 10 of 144 (6.9%) after 1 month, 76 of 143 (52.8%) after 7 months, and 30 of 143 (20.8%) at the last sampling time before slaughter. Wilcoxon signed-rank tests indicated that the two sampling methods gave different results for sampling times 3 and 4 (P < 0.05) but not for sampling time 2 (P = 0.16). Agreement between the two sampling methods was poor (kappa < 0.2) for three of the four sampling times and moderate (kappa = 0.6) for one sampling time, an indication that in this study rectoanal swabs usually were less sensitive than rectal fecal grabs for detection of E. coli O157:H7 in cattle. Overall, the herd of origin was not significantly associated with E. coli O157:H7 results, but the weight of the steers was. Further investigation is needed to determine the effects of potential confounding factors (e.g., size and type of swab, consistency of feces, site sampled, and swabbing technique) that might influence the sensitivity of swabs in recovering E. coli O157:H7 from the rectoanal mucosa of cattle.


2006 ◽  
Vol 69 (5) ◽  
pp. 1154-1158 ◽  
Author(s):  
MARGARET L. KHAITSA ◽  
MARC L. BAUER ◽  
GREGORY P. LARDY ◽  
DAWN K. DOETKOTT ◽  
REDEMPTA B. KEGODE ◽  
...  

Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157: H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P < 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.


2001 ◽  
Vol 64 (12) ◽  
pp. 1899-1903 ◽  
Author(s):  
DAVID SMITH ◽  
MARK BLACKFORD ◽  
SPRING YOUNTS ◽  
RODNEY MOXLEY ◽  
JEFF GRAY ◽  
...  

This study was designed to describe the percentage of cattle shedding Escherichia coli O157:H7 in Midwestern U.S. feedlots and to discover relationships between the point prevalence of cattle shedding the organism and the characteristics of those cattle or the conditions of their pens. Cattle from 29 pens of five Midwestern feedlots were each sampled once between June and September 1999. Feces were collected from the rectum of each animal in each pen. Concurrently, samples of water were collected from the water tank, and partially consumed feed was collected from the feedbunk of each pen. Characteristics of the cattle and conditions of each pen that might have affected the prevalence of cattle shedding E. coli O157:H7 were recorded. These factors included the number of cattle; the number of days on feed; and the average body weight, class, and sex of the cattle. In addition, the temperature and pH of the tank water were determined, and the cleanliness of the tank water and the condition of the pen floor were subjectively assessed. The samples of feces, feed, and water were tested for the presence of E. coli O157:H7. E. coli O157:H7 was isolated from the feces of 719 of 3,162 cattle tested (23%), including at least one animal from each of the 29 pens. The percentage of cattle in a pen shedding E. coli O157:H7 did not differ between feedyards, but it did vary widely within feedyards. A higher prevalence of cattle shed E. coli O157:H7 from muddy pen conditions than cattle from pens in normal condition. The results of this study suggest that E. coli O157:H7 should be considered common to groups of feedlot cattle housed together in pens and that the condition of the pen floor may influence the prevalence of cattle shedding the organism.


2007 ◽  
Vol 70 (1) ◽  
pp. 17-21 ◽  
Author(s):  
A. L. REICKS ◽  
M. M. BRASHEARS ◽  
K. D. ADAMS ◽  
J. C. BROOKS ◽  
J. R. BLANTON ◽  
...  

Prevalences of Escherichia coli O157:H7, Salmonella, and total aerobic microorganisms were determined on the hides of beef feedlot cattle before and after transport from the feedyard to the harvest facility in clean and dirty trailers. Swab samples were taken from the midline and withers of 40 animals on each of 8 days before and after shipping. After samples were collected, animals were loaded in groups of 10 on upper and lower levels of clean and dirty trailers. Animals were unloaded at the harvest facility and kept in treatment groups for sample collection after exsanguination. Salmonella was found more often on hide swabs collected from the midline than on than samples collected from the withers from animals transported in both clean and dirty trailers. Salmonella was found on significantly more hide swabs collected at harvest from both sampling locations than on those collected at the feedyard, with no differences attributed to the type of trailer. At the feedyard, clean trucks had a lower percentage of Salmonella-positive samples than did dirty trucks before animals were loaded. However, after transport, both clean and dirty trucks had a similar prevalence of Salmonella. There were no differences in Salmonella prevalence on hides collected from animals transported on the top and bottom levels of clean and dirty trucks. E. coli O157:H7 was detected on less than 2% of the samples; therefore, no practical conclusions about prevalence could be drawn. Hides sampled at harvest had higher concentrations of aerobic microorganisms than did hides sampled at the feedyard, and concentrations were higher on the midline than on the withers. Although the prevalences of Salmonella and total aerobic microorganisms increased on hides after transport from the feedyard to the plant, this increase was not related to the cleanliness of the trailers or the location of the cattle in the trailers.


1997 ◽  
Vol 60 (5) ◽  
pp. 462-465 ◽  
Author(s):  
DALE D. HANCOCK ◽  
DANIEL H. RICE ◽  
LEE ANN THOMAS ◽  
DAVID A. DARGATZ ◽  
THOMAS E. BESSER

Fecal samples from cattle in 100 feedlots in 13 states were bacteriologically cultured for Escherichia coli O157 that did not ferment sorbitol, lacked beta-glucuronidase, and possessed genes coding for Shiga-like toxin. In each feedlot 30 fresh fecal-pat samples were collected from each of four pens: with the cattle shortest on feed, with cattle longest on feed, and with cattle in two randomly selected pens. E. coli O157 was isolated from 210 (1.8%) of 11,881 fecal samples. One or more samples were positive for E. coli O157 in 63 of the 100 feedlots tested. E. coli O157 was found at roughly equal prevalence in all the geographical regions sampled. The prevalence of E. coli O157 in the pens with cattle shortest on feed was approximately threefold higher than for randomly selected and longest on feed pens. Of the E. coli O157 isolates found in this study, 89.52% expressed the H7 flagellar antigen. E. coli O157 was found to be widely distributed among feedlot cattle, but at a low prevalence, in the United States.


2001 ◽  
Vol 64 (8) ◽  
pp. 1145-1150 ◽  
Author(s):  
NAVEEN CHIKTHIMMAH ◽  
RAMASWAMY C. ANANTHESWARAN ◽  
ROBERT F. ROBERTS ◽  
EDWARD W. MILLS ◽  
STEPHEN J. KNABEL

Due to undesirable quality changes, Lebanon bologna is often processed at temperatures that do not exceed 48.8°C (120°F). Therefore, it is important to study parameters that influence the destruction of Escherichia coli O157:H7 in Lebanon bologna. The objective of the present study was to determine the influence of curing salts (NaCl and NaNO2) on the destruction of E. coli O157:H7 during Lebanon bologna processing. Fermentation to pH 4.7 at 37.7°C reduced populations of E. coli O157:H7 by approximately 0.3 log10, either in the presence or absence of curing salts. Subsequent destruction of E. coli O157:H7 during heating of fermented product to 46.1°C was significantly reduced by the presence of 3.5% NaCl and 156 ppm NaNO2, compared to product without curing salts (P < 0.01). The presence of a higher level of NaCl (5%) in Lebanon bologna inhibited the growth of lactic acid bacteria (LAB), which yielded product with higher pH (~5.0) and significantly reduced the destruction of E. coli O157:H7 even further (P < 0.05). Lower concentrations of NaCl (0, 2.5%) yielded Lebanon bologna with higher LAB counts and lower pHs, compared to product with 5% NaCl. When lactic acid was used to adjust pH in product containing different levels of NaCl, it was determined that low pH was directly influencing destruction of E. coli O157:H7, not NaCl concentration.


2015 ◽  
Vol 12 (110) ◽  
pp. 20150446 ◽  
Author(s):  
Simon E. F. Spencer ◽  
Thomas E. Besser ◽  
Rowland N. Cobbold ◽  
Nigel P. French

Supershedders have been suggested to be major drivers of transmission of Escherichia coli O157:H7 ( E. coli O157:H7) among cattle in feedlot environments, despite our relatively limited knowledge of the processes that govern periods of high shedding within an individual animal. In this study, we attempt a data-driven approach, estimating the key characteristics of high shedding behaviour, including effects on transmission to other animals, directly from a study of natural E. coli O157:H7 infection of cattle in a research feedlot, in order to develop an evidence-based definition of supershedding. In contrast to the hypothesized role of supershedders, we found that high shedding individuals only modestly increased the risk of transmission: individuals shedding over 10 3 cfu g −1 faeces were estimated to pose a risk of transmission only 2.45 times greater than those shedding below that level. The data suggested that shedding above 10 3 cfu g −1 faeces was the most appropriate definition of supershedding behaviour and under this definition supershedding was surprisingly common, with an estimated prevalence of 31.3% in colonized individuals. We found no evidence that environmental contamination by faeces of shedding cattle contributed to transmission over timescales longer than 3 days and preliminary evidence that higher stocking density increased the risk of transmission.


2014 ◽  
Vol 77 (2) ◽  
pp. 314-319 ◽  
Author(s):  
M. E. JACOB ◽  
J. BAI ◽  
D. G. RENTER ◽  
A. T. ROGERS ◽  
X. SHI ◽  
...  

Detection of Escherichia coli O157 in cattle feces has traditionally used culture-based methods; PCR-based methods have been suggested as an alternative. We aimed to determine if multiplex real-time (mq) or conventional PCR methods could reliably detect cattle naturally shedding high (≥104 CFU/g of feces) and low (~102 CFU/g of feces) concentrations of E. coli O157. Feces were collected from pens of feedlot cattle and evaluated for E. coli O157 by culture methods. Samples were categorized as (i) high shedders, (ii) immunomagnetic separation (IMS) positive after enrichment, or (iii) culture negative. DNA was extracted pre- and postenrichment from 100 fecal samples from each category (high shedder, IMS positive, culture negative) and subjected to mqPCR and conventional PCR assays based on detecting three genes, rfbE, stx1, and stx2. In feces from cattle determined to be E. coli O157 high shedders by culture, 37% were positive by mqPCR prior to enrichment; 85% of samples were positive after enrichment. In IMS-positive samples, 4% were positive by mqPCR prior to enrichment, while 43% were positive after enrichment. In culture-negative feces, 7% were positive by mqPCR prior to enrichment, and 40% were positive after enrichment. The proportion of high shedder–positive and culture-positive (high shedder and IMS) samples were significantly different from mqPCR-positive samples before and after enrichment (P < 0.01). Similar results were observed for conventional PCR. Our data suggest that mqPCR and conventional PCR are most useful in identifying high shedder animals and may not be an appropriate substitute to culture-based methods for detection of E. coli O157 in cattle feces.


2011 ◽  
Vol 74 (6) ◽  
pp. 912-918 ◽  
Author(s):  
K. L. SWYERS ◽  
B. A. CARLSON ◽  
K. K. NIGHTINGALE ◽  
K. E. BELK ◽  
S. L. ARCHIBEQUE

Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P < 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P > 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight XbaI PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.


Sign in / Sign up

Export Citation Format

Share Document