Critical Issues in Detecting Viable Listeria monocytogenes Cells by Real-Time Reverse Transcriptase PCR

2012 ◽  
Vol 75 (3) ◽  
pp. 512-517 ◽  
Author(s):  
LINLIN XIAO ◽  
LU ZHANG ◽  
HUA H. WANG

Rapid and specific detection of viable Listeria monocytogenes cells, particularly in processed foods, is a major challenge in the food industry. To assess the suitability of using RNA-based detection methods to detect viable cells, several sets of PCR primers and florescent probes were designed targeting the 16S rRNA, internalin A, and ribosomal protein L4 genes. One-step real-time reverse transcriptase (RT) PCR assays were conducted using RNAs extracted from control and heat-treated L. monocytogenes samples. The cycle threshold values were significantly higher in heat-treated cells than in controls. However, real-time RT-PCR amplification signals were still detected even in samples stored at room temperature for 24 h after lethal treatments, and the intensity of the signals was correlated with the cell population. The 16S rRNA molecules were the most stable of the three targets evaluated, and the impact on detection efficacy of the relative positions of the PCR primers within the target genes was limited under the experimental conditions. These results suggest that real-time RT-PCR assays have advantages over conventional PCR assays for assessing viable L. monocytogenes cells, but the results are affected by the stability of the RNA molecules targeted. These findings could have a major impact on interpretation of RNA-based detection data and gene expression studies.

2005 ◽  
Vol 17 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Steven B. Kleiboeker ◽  
Susan K. Schommer ◽  
Sang-Myeong Lee ◽  
Sandy Watkins ◽  
Wayne Chittick ◽  
...  

Porcine reproductive and respiratory syndrome (PRRS) is 1 of the most economically important diseases of swine. Detection of the etiologic agent, PRRS virus (PRRSV), represents a diagnostic challenge due to the heterogeneity of field isolates as well as the propensity for swine to develop persistent infection in which virus is difficult to detect. Recently European (EU) lineage PRRSV isolates, which are genetically divergent from North American (NA) isolates, have been introduced into NA swine further complicating efforts to diagnose this disease. In this study, real-time ( TaqMan) reverse transcriptase (RT)–PCR assays were developed for multiplex detection, differentiation, and quantification of NA and EU PRRSV field isolates. Oligonucleotide primers and dual-labeled probes were selected from conserved regions of open-reading frame 7 and the 3'-untranslated region. The real-time RT-PCR assays described for the NA or EU genotype of PRRSV detected viral RNA from 83/83 strains (74 NA; 9 EU) previously isolated by cell culture between 1992 and 2003. The analytical sensitivity of both assays was consistently found to be less than a single TCID50, which corresponded to 5–10 RNA molecules, and was not significantly reduced when the reactions were performed in a multiplex format. When performing multiplex reactions, sensitive detection was possible even when 1 viral RNA concentration was up to 5,000-fold higher than the second. The diagnostic sensitivity and specificity of the multiplex reaction was found to be at a minimum equivalent to that of both nested RT-PCR and virus isolation.


2006 ◽  
Vol 69 (11) ◽  
pp. 2754-2757 ◽  
Author(s):  
SCOTT E. HANNA ◽  
HUA H. WANG

Several virulence factors are involved in Listeria monocytogenes pathogenicity. L. monocytogenes internalins, particularly internalin A, are required for bacterial adhesion to and invasion of human intestinal epithelial cells. The expression of inter-nalins is thus related to virulence. Identification of conditions involved in regulating the expression of L. monocytogenes virulence factors is essential for developing targeted strategies to control listeriosis incidence and improving therapeutic approaches. The primary aim of this study was to develop a quantitative real-time reverse transcriptase PCR platform to study the impact of environmental factors on L. monocytogenes Scott A virulence factor expression, particularly in potentially complex ecosystems. A Taqman PCR–based, rapid quantitative gene expression evaluation method was established with the L. monocytogenes ribosomal protein L4 encoding gene used as an internal standard. Our data suggest that inlA expression is influenced by food composition and temperature, indicating that certain food processing or storage conditions, such as the use of lactic and acetic acids at common storage temperatures, could affect the expression of L. monocytogenes virulence factor.


2001 ◽  
Vol 69 (8) ◽  
pp. 4759-4766 ◽  
Author(s):  
Bachra Rokbi ◽  
Delphine Seguin ◽  
Bruno Guy ◽  
Véronique Mazarin ◽  
Emmanuel Vidor ◽  
...  

ABSTRACT Despite increasing knowledge on the biology of Helicobacter pylori, little is known about the expression pattern of its genome during infection. While mouse models of infection have been widely used for the screening of protective antigens, the reliability of the mouse model for gene expression analysis has not been assessed. In an attempt to address this question, we have developed a quantitative reverse transcriptase PCR (RT-PCR) that allowed the detection of minute amounts of mRNA within the gastric mucosa. The expression of four genes, 16S rRNA, ureA (encoding urease A subunit), katA (catalase), and alpA (an adhesin), was monitored during the course of a 6-month infection of mice and in biopsy samples from of 15 infected humans. We found that the selected genes were all expressed within both mouse and human infected mucosae. Moreover, the relative abundance of transcripts was the same (16S rRNA > ureA >katA > alpA), in the two models. Finally, results obtained with the mouse model suggest a negative effect of bacterial burden on the number of transcripts of each gene expressed per CFU (P < 0.05 for 16S rRNA, alpA, andkatA). Overall, this study demonstrates that real-time RT-PCR is a powerful tool for the detection and quantification ofH. pylori gene expression within the gastric mucosa and strongly indicates that mice experimentally infected with H. pylori provide a valuable model for the analysis of bacterial gene expression during infection.


Author(s):  
Clément Bezier ◽  
Géraldine Anthoine ◽  
Abdérafi Charki

In the face of the COVID-19 (Coronavirus Disease 2019) pandemic, the World Health Organization (WHO) has urged countries to test the population more widely. Clinical laboratories have been confronted with a huge demand for testing and have had to make urgent preparations for staff training, to establish new analytical processes, reorganize the workspace, and stock up on specific equipment and diagnostic test kits. The reliability of SARS-Cov-2 test results is of critical importance, given the impact it has on patient care and the management of the health crisis. A review of the literature available for the period leading up to and including June 2020 on the reliability of SARS-Cov-2 (Severe Acute Respiratory Syndrome Coronavirus) detection methods using real-time RT PCR (Reverse Transcription - Polymerase Chain Reaction) brings together the primary factors teams of scientists claim or demonstrate to affect the reliability of results. A description is given of the RT-PCR testing method, followed by a presentation of the characteristics and validation techniques used. A summary of data from the literature on the reliability of tests and commercial kits for SARS-Cov-2 detection, including current uncertainties with regard to the molecular targets selected and genetic diversity of SARS-Cov-2 is provided. The limitations and perspectives are then discussed in detail in the light of the bibliographic data available. Many questions have been asked that still remain unanswered. The lack of knowledge about this novel virus, which appeared at the end of 2019, has a significant impact on the technical capacity to develop reliable, rapid and practical tools for its detection.


2008 ◽  
Vol 74 (13) ◽  
pp. 4226-4230 ◽  
Author(s):  
YoungBin Park ◽  
You-Hee Cho ◽  
YoungMee Jee ◽  
GwangPyo Ko

ABSTRACT We developed an immunomagnetic separation (IMS) technique combined with real-time TaqMan reverse transcriptase PCR (RT-PCR), which allowed detection of norovirus at a level as low as 3 to 7 RT-PCR units from artificially contaminated strawberries. The inoculum recovery rate ranged from 14 to 30%. The data demonstrate that IMS combined with real-time RT-PCR will be useful as a rapid and sensitive method for detecting food-borne microbial contaminants.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 273
Author(s):  
Alfredo Diaz-Lara ◽  
Kristian Stevens ◽  
Vicki Klaassen ◽  
Deborah Golino ◽  
Maher Al Rwahnih

Viruses can cause economic losses in fruit trees, including Prunus spp., by reducing yield and marketable fruit. Given the genetic diversity of viruses, reliable diagnostic methods relying on PCR are critical in determining viral infection in fruit trees. This study evaluated the broad-range detection capacity of currently available real-time RT-PCR assays for Prunus-infecting viruses and developed new assays when current tests were inadequate or absent. Available assays for 15 different viruses were exhaustively evaluated in silico to determine their capacity to detect virus isolates deposited in GenBank. During this evaluation, several isolates deposited since the assay was designed exhibited nucleotide mismatches in relation to the existing assay’s primer sequences. In cases where updating an existing assay was impractical, we performed a redesign with the dual goals of assay compactness and comprehensive inclusion of genetic diversity. The efficiency of each developed assay was determined by a standard curve. To validate the assay designs, we tested them against a comprehensive set of 87 positive and negative Prunus samples independently analyzed by high throughput sequencing. As a result, all the real-time RT-PCR assays described herein successfully detected the different viruses and their corresponding isolates. To further validate the new and updated assays a Prunus germplasm collection was surveyed. The sensitive and reliable detection methods described here will be used for the large-scale pathogen testing required to maintain the highest quality nursery stock.


2009 ◽  
Vol 76 (4) ◽  
pp. 1120-1124 ◽  
Author(s):  
Mi Young Lim ◽  
Ju-Mi Kim ◽  
Jung Eun Lee ◽  
GwangPyo Ko

ABSTRACT Despite the importance of human noroviruses (NoVs) in public health, little information concerning the effectiveness of ozone against NoVs is available. We determined the efficacy of ozone disinfection using murine norovirus (MNV) as a surrogate of human NoV. MNV in ozone demand-free buffer was exposed to a predetermined dose of ozone at two different pHs and temperatures. The virus remaining in the solution was analyzed by plaque assay, real-time TaqMan reverse transcriptase PCR (RT-PCR) (short template), and long-template conventional RT-PCR. Under all conditions, more than 99% of the MNV was inactivated by ozone at 1 mg/liter within 2 min. Both RT-PCR assays significantly underestimated the inactivation of MNV, compared with that measured by plaque assay. Our results indicate that NoV may be more resistant to ozone than has been previously reported. Nevertheless, proper ozone disinfection practices can be used to easily control its transmission in water.


Author(s):  
Ute Eberle ◽  
◽  
Clara Wimmer ◽  
Ingrid Huber ◽  
Antonie Neubauer-Juric ◽  
...  

AbstractTo face the COVID-19 pandemic, the need for fast and reliable diagnostic assays for the detection of SARS-CoV-2 is immense. We describe our laboratory experiences evaluating nine commercially available real-time RT-PCR assays. We found that assays differed considerably in performance and validation before routine use is mandatory.


2009 ◽  
Vol 81 (9) ◽  
pp. 1569-1575 ◽  
Author(s):  
Lan Lin ◽  
Louis Libbrecht ◽  
Jannick Verbeeck ◽  
Chris Verslype ◽  
Tania Roskams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document