Fate of Listeria monocytogenes, Pathogenic Yersinia enterocolitica, and Escherichia coli O157:H7 gfp+ in Ready-to-Eat Salad during Cold Storage: What Is the Risk to Consumers?

2017 ◽  
Vol 80 (2) ◽  
pp. 204-212 ◽  
Author(s):  
Karin Söderqvist ◽  
Susanne Thisted Lambertz ◽  
Ivar Vågsholm ◽  
Lise-Lotte Fernström ◽  
Beatrix Alsanius ◽  
...  

ABSTRACT In this study, we investigated the fate of Listeria monocytogenes, pathogenic Yersinia enterocolitica, and Escherichia coli O157:H7 gfp+ inoculated in low numbers into ready-to-eat baby spinach and mixed-ingredient salad (baby spinach with chicken meat). Samples were stored at recommended maximum refrigerator temperature (8°C in Sweden) or at an abuse temperature (15°C) for up to 7 days. Mixed-ingredient salad supported considerable growth when stored at 15°C during shelf life (3 days), with populations of L. monocytogenes, pathogenic Y. enterocolitica, and E. coli O157:H7 gfp+ increasing from less than 2.0 log CFU/g on day 0 to 7.0, 4.0, and 5.6 log CFU/g, respectively. However, when mixed-ingredient salad was stored at 8°C during shelf life, only L. monocytogenes increased significantly, reaching 3.0 log CFU/g within 3 days. In plain baby spinach, only pathogenic Y. enterocolitica populations increased significantly during storage for 7 days, and this was exclusively at an abuse temperature (15°C). Thus, mixing ready-to-eat leafy vegetables with chicken meat strongly influenced levels of inoculated strains during storage. To explore the food safety implications of these findings, bacterial numbers were translated into risks of infection by modeling. The risk of listeriosis (measured as probability of infection) was 16 times higher when consuming a mixed-ingredient salad stored at 8°C at the end of shelf life, or 200,000 times higher when stored at 15°C, compared with when consuming it on the day of inoculation. This indicates that efforts should focus on preventing temperature abuse during storage to mitigate the risk of listeriosis. The storage conditions recommended for mixed-ingredient salads in Sweden (maximum 8°C for 3 days) did not prevent growth of L. monocytogenes in baby spinach mixed with chicken meat. Manufacturers preparing these salads should be aware of this, and recommended storage temperature should be revised downwards to reduce the risk of foodborne disease.

Food Control ◽  
2015 ◽  
Vol 47 ◽  
pp. 306-311 ◽  
Author(s):  
Elena Dalzini ◽  
Elena Cosciani-Cunico ◽  
Valentina Bernini ◽  
Barbara Bertasi ◽  
Marina-Nadia Losio ◽  
...  

Food Control ◽  
2012 ◽  
Vol 26 (2) ◽  
pp. 269-273 ◽  
Author(s):  
Andrew G. Gehring ◽  
David M. Albin ◽  
Arun K. Bhunia ◽  
Hyochin Kim ◽  
Sue A. Reed ◽  
...  

2003 ◽  
Vol 66 (4) ◽  
pp. 549-558 ◽  
Author(s):  
SARAH L. HOLLIDAY ◽  
LARRY R. BEUCHAT

A study was conducted to characterize the survival and inactivation kinetics of a five-serotype mixture of Salmonella (6.23 to 6.55 log10 CFU per 3.5-ml or 4-g sample), a five-strain mixture of Escherichia coli O157:H7 (5.36 to 6.14 log10 CFU per 3.5-ml or 4-g sample), and a six-strain mixture of Listeria monocytogenes (5.91 to 6.18 log10 CFU per 3.5-ml or 4-g sample) inoculated into seven yellow fat spreads (one margarine, one butter-margarine blend, and five dairy and nondairy spreads and toppings) after formulation and processing and stored at 4.4, 10, and 21°C for up to 94 days. Neither Salmonella nor E. coli O157:H7 grew in any of the test products. The time required for the elimination of each pathogen depended on the product and the storage temperature. Death was more rapid at 21°C than at 4.4 or 10°C. Depending on the product, the time required for the elimination of viable cells at 21°C ranged from 5 to 7 days to >94 days for Salmonella, from 3 to 5 days to 28 to 42 days for E. coli O157:H7, and from 10 to 14 days to >94 days for L. monocytogenes. Death was most rapid in a water-continuous spray product (pH 3.66, 4.12% salt) and least rapid in a butter-margarine blend (pH 6.66, 1.88% salt). E. coli O157:H7 died more rapidly than did Salmonella or L. monocytogenes regardless of storage temperature. Salmonella survived longer in high-fat (≥61%) products than in products with lower fat contents. The inhibition of growth is attributed to factors such as acidic pH, salt content, the presence of preservatives, emulsion characteristics, and nutrient deprivation. L. monocytogenes did not grow in six of the test products, but its population increased between 42 and 63 days in a butter-margarine blend stored at 10°C and between 3 and 7 days when the blend was stored at 21°C. On the basis of the experimental parameters examined in this study, traditional margarine and spreads not containing butter are not “potentially hazardous foods” in that they do not support the growth of Salmonella, E. coli O157:H7, or L. monocytogenes.


2002 ◽  
Vol 65 (7) ◽  
pp. 1142-1145 ◽  
Author(s):  
T. KIM ◽  
J. L. SILVA ◽  
T. C. CHEN

Effects of intensity and processing time of 254 nm UV irradiation on Listeria monocytogenes, Escherichia coli O157: H7, and Salmonella Typhimurium were investigated. Intensities measured at 5.08, 10.1, 15.2, and 20.3 cm from the light source were 1,000, 500, 250, and 150 μW/cm2, respectively. Intensities of 250 or 500 μW/cm2 reduced all suspended pathogen cells in peptone water about 5 log cycles after 2 min and completely inactivated L. monocytogenes and E. coli O157:H7 after 3 min by reductions of 8.39 and 8.64 log cycles, respectively. Intensities of 250 or 500 μW/cm2 also reduced (P ≤ 0.05) the tested pathogens inoculated on stainless steel (SS) chips, and E. coli O157:H7 was completely destroyed at 500 μW/cm2 for 3 min. After UV treatment for 3 min at 500 μW/cm2, all selected pathogens on chicken meat with or without skin showed reduction ranges from 0.36 to 1.28 log cycles. Results demonstrated that UV irradiation could effectively decrease pathogens in peptone water and on SS but that it was less effective on chicken meat.


2012 ◽  
Vol 48 (No. 5) ◽  
pp. 126-132 ◽  
Author(s):  
M. Gulmez ◽  
A. Guven

The survival of Escherichia coli O157:H7, Listeria monocytogenes 4b and Yersinia enterocolitica O3 in traditional yogurt and kefir during fermentation, in ayran (a dairy beverage in Turkey), pasteurised (long-life) ayran, modified kefir (salted and diluted kefir) and pasteurised modified kefir during cold storage were investigated. Pasteurised samples were used to monitor the antibacterial effect of natural flora of yogurt and kefir during cold storage. Populations of all the strains were increased during fermentation, and thus pre-fermentation contamination appeared more rhisky than postfermentation contamination. Pasteurisation appeared not to be disaadventageous an application on the microbiological safety of the samples, neverthelessbiological benefits which may come from live microorganisms is lost. While E. coli O157:H7 and L. monocytogenes 4b survived for up to 21 days in all samples, Y. enterocolitica O3 survived only for 14 days in modified kefir. Yogurt microflora appeared to be more suppressive on the pathogens than that of kefir.


2002 ◽  
Vol 65 (12) ◽  
pp. 1976-1980 ◽  
Author(s):  
BARBARA B. ADLER ◽  
LARRY R. BEUCHAT

Garlic is known to have antimicrobial activity against several spoilage and pathogenic bacteria. However, the fate of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in garlic butter has not been reported. This study was undertaken to determine the viability of these organisms in garlic butter as affected by the type of raw minced garlic added to the butter, storage temperature, and storage time. Unsalted butter at 40°C was combined with raw minced jumbo, elephant, or small-cloved garlic at a 4:1 butter/garlic ratio (wt/wt), inoculated with mixed-strain suspensions of Salmonella, E. coli O157:H7, or L. monocytogenes, and stored at 4.4, 21, or 37°C for up to 48 h. All pathogens retained their viability at 4.4°C, regardless of the presence of garlic. The addition of garlic to butter enhanced the rates of inactivation of all three pathogens at 21 and 37°C. The most rapid decline in pathogen populations was observed at 37°C. The inactivation of L. monocytogenes occurred more slowly than did that of Salmonella or E. coli O157:H7. The inactivation of Salmonella and L. monocytogenes was more rapid in jumbo garlic butter than in elephant or small-cloved garlic butter. It is concluded that Salmonella, E. coli O157:H7, and L. monocytogenes did not grow in unsalted butter, with or without garlic added (20%, wt/wt), when inoculated products were stored at 4.4, 21, and 37°C for up to 48 h.


2000 ◽  
Vol 63 (5) ◽  
pp. 608-612 ◽  
Author(s):  
MOHSEN S. ISSA ◽  
ELLIOT T. RYSER

Commercially pasteurized milk (∼2% milkfat) was heated at 85 to 87°C/30 min, inoculated to contain 2,000 to 6,000 CFU/ml of Listeria monocytogenes, Salmonella Typhimurium DT104, or Escherichia coli O157:H7, cultured at 43°C for 4 h with a 2.0% (wt/wt) commercial yogurt starter culture, stored 12 to 14 h at 6°C, and centrifuged to obtain a Labneh-like product. Alternatively, traditional salted and unsalted Labneh was prepared using a 3.0% (wt/wt) starter culture inoculum, similarly inoculated after manufacture with the aforementioned pathogens, and stored at 6°C and 20°C. Throughout fermentation, Listeria populations remained unchanged, whereas numbers of Salmonella increased 0.33 to 0.47 logs during the first 2 h of fermentation and decreased thereafter. E. coli populations increased 0.46 to 1.19 logs during fermentation and remained that these levels during overnight cold storage. When unsalted and salted Labneh were inoculated after manufacture, Salmonella populations decreased >2 logs in all samples after 2 days, regardless of storage temperature, with the pathogen no longer detected in 4-day-old samples. Numbers of L. monocytogenes decreased from 2.48 to 3.70 to <1.00 to 1.95 logs after 2 days with the pathogen persisting up to 15 days in one lot of salted/unsalted Labneh stored at 6°C. E. coli O157:H7 populations decreased from 3.39 to 3.7 to <1.00 to 2.08 logs during the first 2 days, with the pathogen no longer detected in any 4-dayold samples. Inactivation rates for all three pathogens in Labneh were unrelated to storage temperature or salt content. Unlike L. monocytogenes that persisted up to 15 days in Labneh, rapid inactivation of Salmonella Typhimurium DT104 and E. coli O157:H7 suggests that these emerging foodborne pathogens are of less public health concern in traditional Labneh.


Sign in / Sign up

Export Citation Format

Share Document