Validation of a Simple Two-Point Method To Assess Restaurant Compliance with Food Code Cooling Rates

2020 ◽  
Vol 84 (1) ◽  
pp. 6-13
Author(s):  
MATTHEW J. IGO ◽  
NICOLE HEDEEN ◽  
DONALD W. SCHAFFNER

ABSTRACT Outbreaks from improperly cooled foods continue to occur despite clearly described Food Code cooling guidelines. It is difficult for regulators to enforce these guidelines because they are typically in an establishment for less than the 6 h needed to document proper cooling. Prior research proposed using a novel method to estimate cooling rates based on two time-temperature points, but this method has not yet been validated. Time-temperature profiles of 29 different foods were collected in 25 different restaurants during cooling. Cooling curves were divided into two categories: typical (21 foods) and atypical (eight foods) prior to further analysis. Analysis of the typical cooling curves used simple linear regression to calculate cooling rates. The atypical cooling profiles were studied using Monte Carlo simulations of the cooling rate. Almost all linearized typical cooling curves had high (>0.90) R2 values. Six foods with typical cooling profiles that did not pass Food Code cooling times were correctly identified by the two-point model as having slow cooling rates. Three foods that did not pass Food Code cooling times were identified by the two-point model as having marginal cooling rates. Ten of 12 foods identified by the two-point model as having acceptable cooling rates met Food Code cooling times. Most (six of eight) foods that were considered to have atypical cooling curves failed to meet the Food Code cooling times. The two-point model was also able to determine whether these foods would fail based on Food Code guidelines depending upon the simulation criteria used. Our data show that food depth has a strong influence on cooling rate. Containers with a food depth ≥7.6 cm (3 in.) were more likely to have cooling rates slower than the U.S. Food and Drug Administration Model Food Code cooling rate. This analysis shows that the two-point method can be a useful screening tool to identify potential cooling rate problems during a routine restaurant inspection visit. HIGHLIGHTS

2021 ◽  
Vol 176 (10) ◽  
Author(s):  
Sharon L. Webb

AbstractThe unknown cooling-rate history of natural silicate melts can be investigated using differential scanning heat capacity measurements together with the limiting fictive temperature analysis calculation. There are a range of processes occurring during cooling and re-heating of natural samples which influence the calculation of the limiting fictive temperature and, therefore, the calculated cooling-rate of the sample. These processes occur at the extremes of slow cooling and fast quenching. The annealing of a sample at a temperature below the glass transition temperature upon cooling results in the subsequent determination of cooling-rates which are up to orders of magnitude too low. In contrast, the internal stresses associated with the faster cooling of obsidian in air result in an added exothermic signal in the heat capacity trace which results in an overestimation of cooling-rate. To calculate cooling-rate of glass using the fictive temperature method, it is necessary to create a calibration curve determined using known cooling- and heating-rates. The calculated unknown cooling-rate of the sample is affected by the magnitude of mismatch between the original cooling-rate and the laboratory heating-rate when using the matched cooling-/heating-rate method to derive a fictive temperature/cooling-rate calibration curve. Cooling-rates slower than the laboratory heating-rate will be overestimated, while cooling-rates faster than the laboratory heating-rate are underestimated. Each of these sources of error in the calculation of cooling-rate of glass materials—annealing, stress release and matched cooling/heating-rate calibration—can affect the calculated cooling-rate by factor of 10 or more.


2010 ◽  
Vol 22 (1) ◽  
pp. 217 ◽  
Author(s):  
W. Si ◽  
Y. Lu ◽  
X. He ◽  
S. Ji ◽  
Y. Niu ◽  
...  

A significant increase in nonhuman primate models of human diseases will be expected in the near future since the successes in production of genetically engineered rhesus monkey models of human diseases. Sperm banking can provide an effective way to preserve valuable genetic resources. Our objective was to (1) develop a protocol using directional freezing technique (DFT) for rhesus monkey spermatozoa cryopreservation, which allows precise control of the velocity and the morphology of the ice-front propagation by transferring the tubes loaded with 2 mL sperm samples at a controllable velocity through two separate chambers with controllable temperature settings, and (2) achieve survival rate that was higher than that achieved with conventional freezing technique (CFT), by which sperm samples were cryopreserved in 0.25 mL straws with liquid nitrogen vapor in a styrofoam box. Sperm motility, acrosomal integrity, and in vitro fertilization (IVF) assay were used to assess the function of frozen-thawed spermatozoa. Data were analyzed by ANOVA and Fisher protected LSD test. Experiment 1 was aimed at optimizing the cooling rate using DFT. Tubes were frozen using the multi-thermal gradient freezing device (MTG 516, Harmony CryoCareTM, IMT Ltd.) at fast (16°C/min), medium (12°C/min), and slow (7°C/min) cooling rates, which corresponded to the transferring velocities (2.5, 1.5, and 0.5 mm s-1, respectively). The results showed that spermatozoa frozen at fast and medium cooling rates showed significantly higher frozen-thawed motility than those frozen at slow cooling rate (61% and 59% v. 50%, P < 0.05). However, no difference was observed on sperm acrosomal integrity among the experimental groups (84, 80, and 78%, respectively, P > 0.05). The purposes of Experiment 2 were determined to examine if using DFT at the optimized cooling rate (12°C/min) can improve the cryo-survival of rhesus monkey spermatozoa compared with CFT. Our results showed that spermatozoa cryopreserved by using DFT achieved significantly higher frozen-thawed sperm motility that those cryopreserved by using CFT (64 v. 54%, P < 0.05). However, no difference was observed on acrosomal integrity between spermatozoa cryopreserved by DFT and CFT (84 and 83%, respectively; P > 0.05). The function of spermatozoa cryopreserved by using DFT was further evaluated by IVF. Females were treated with rhFSH twice-daily for 8 days after the onset of menses and following a treatment of hCG injection on Day 9. Cumulus-oocyte complexes were collected by laparoscopic follicular aspiration 32 h later. Of the inseminated oocytes, 79% were fertilized and 90 and 53% of the resulting zygotes developed into 2-cell and blastocysts, respectively. The fertilization rate was lower and the blastocyst rate was slightly higher than our previous report when fresh spermatozoa were used for IVF (94 and 52%, respectively). Our results indicate that spermatozoa of rhesus monkeys can be effectively cryopreserved using DFT in large volume. This finding provided a new and effective way for genetics preservation purposes in this important species.


2010 ◽  
Vol 428-429 ◽  
pp. 247-250 ◽  
Author(s):  
Yuan Ming Huang ◽  
Qing Lan Ma ◽  
Bao Gai Zhai

The influence of cooling rate on the phase transitions of a three-benzene-ring containing bent-core liquid crystal 1,3-phenylene-bis[4-(hexylcarboyloxyl)benzylideneamine] has been investigated by means of differential scanning calorimetry and polarized optical microscopy. Our results show that the cooling rates in the second cooling run pose significant effects on the phase transitions of the bent-core liquid crystal despite the cooling rates in the first cooling run pose little effects on the phase transitions. In the second cooling run, the banana phases survived only when the cooling rates were in the range of 14~15oC/min whereas both slow cooling rates which were less than 13oC/min and fast cooling rates which were higher than 16oC/min made the banana phases disappeared.


2008 ◽  
Vol 575-578 ◽  
pp. 1117-1122
Author(s):  
Tarja Jäppinen ◽  
Seppo Kivivuori

In steel wire processing it is difficult to reach a homogenous structure throughout the cross-section of the wire particularly in greater diameters. One alternative for producing a homogenous structure is to find a cooling path with a wide transformation temperature range. Fully austenite steel wire rolled at high temperatures can be decomposed into ferritic-martensitic dual phase structure using relatively slow cooling rates. Test materials were low alloyed low carbon steels with variations in alloying elements. Gleeble-1500 thermomechanical simulator was utilised to study the effect of cooling rate on decomposition of austenite after deformation. The microstructures were studied with an optical microscope. In certain low alloyed steels slow cooling rates eliminate the bainite transformation and instead martensite is formed. The final microstructure depends mainly on the carbon content but also on the amount of other alloying elements and their effects on the austenite phase.


2013 ◽  
Vol 554-557 ◽  
pp. 582-595 ◽  
Author(s):  
Asnul Hadi Ahmad ◽  
Sumsun Naher ◽  
Dermot Brabazon

In order to determine suitable processing conditions for semi-solid aluminium 7075 thermal analysis (TA) was performed in order to obtain the relationship between fraction solid and temperature. During experimental work, the alloy was heated to 750°C by induction furnace and solidified at various cooling rates. Cooling curves for the metal were recorded with two thermocouples, one at the centre of the melt volume and one beside the containing crucible wall. A specially designed chamber with kaowool blanket was used to achieve the slowest cooling rate. The faster cooling rate was achieved with the crucible in open atmosphere with a set air flow rate over the crucible. A Data Acquisition (DAQ) system controlled by LabVIEW software was used to record the temperature-time profiles. From these cooling curves, the phase change at any corresponding time and temperature was estimated. The temperature difference between centre and wall of crucible was used to determine dendritic coherency point (DCP). Results show that, the slowest cooling rate with the kaowool blanket was at 0.03°C/s. An intermediate cooling rate of 0.21°C/s was achieved by leaving the melt to cool without kaowool blanket or forced air flow, and the fastest cooling rate was 0.43°C/s. The change in cooling rate altered the temperatures at which phase changes occurred, including those for eutectic and solidus. It was found that for lower the cooling rates that the DCP occurred at lower temperatures. The DCP for the cooling rate of 0.03 °C/s was found to be 574°C (corresponding to 0.85 fraction solid) whereas the DCP for 0.43 °C/s was found to be 623°C (corresponding to 0.55 fraction solid).


2013 ◽  
Vol 765 ◽  
pp. 130-134 ◽  
Author(s):  
Deni Ferdian ◽  
Jacques Lacaze ◽  
Ibon Lizarralde ◽  
Andrea Niklas ◽  
Ana Isabel Fernandez-Calvo

In this present work, an assessment of eutectic modification based on thermal analysis was performed on modified A356 alloy. The effect of various cooling rates which were achieved by means of casting samples with various moduli in sand and metallic moulds was investigated. Cooling curves recorded from thermocouples inserted in the centre of the samples showed characteristic undercooling and recalescence associated with (Al)-Si eutectic modification. The results showed that cooling rate has a role in observed modification level. Furthermore, differential thermal analysis was included to determine the eutectic melting temperature.


1975 ◽  
Vol 21 (11) ◽  
pp. 1724-1732 ◽  
Author(s):  
Peter H. Calcott ◽  
Robert A. MacLeod

The effect of cooling rate and subsequent warming rate on survival of lactose-limited Escherichia coli was investigated. As previously reported, in the slow cooling rate range, a peak of survival was noted at 8 °C/min with survival decreasing as the cooling rate was increased or decreased from this value. Minimal survival was noted at 100 °C/min; increasing the cooling rate above 100 °C/min increased survival. At cooling rates greater than 200 °C/min, the survival became dependent on subsequent warming rates.Permeability damage, as measured by release of UV-absorbing material, potassium and β-galactosidase, and increased accessibility of glucose-6-phosphate dehydrogenase to its substrates, was dependent on the cooling rate when cells were frozen in either water or saline. For cooling rates less than about 8 °C/min, there was minimal permeability damage to cells frozen in water. However, at rates greater than this value, damage and viability were related; the lower the viability the more the damage to the permeability barrier. The relationship was strengthened by the observations that protectants which increased survival reduced damage as well and that at ultrarapid cooling rates where survivals were dependent on warming rates, the extent of damage was likewise dependent on the warming rate.Saline frozen cells were damaged by freezing and thawing more than comparable water-frozen cells over the whole cooling rate range. At cooling rates less than 8 °C/min, frozen in water, permeability damage of cells frozen in saline increased as the cooling rate decreased. As the cooling rate was increased from 8 °C/min, the damage increased as viability decreased.The relevance of these findings to the two-factor hypothesis of cell death is discussed.


2013 ◽  
Vol 813 ◽  
pp. 157-160
Author(s):  
Guang Wei Zhao ◽  
Xi Cong Ye ◽  
Zeng Min Shi ◽  
Wen Jun Liu

The effect of cooling rate on the solicitation microstructure of a ternary cast Al-5.17Cu-2.63Si alloy is investigated. To create widely different cooling rates for the investigated alloy, the melts were cast into four molds made of different materials: aluminum, graphite, sand, and alumina-silicate-fiber felt (a thermal insulated material), respectively. The cooling curves for each mold specimen were simultaneously measured using calibrated K-type thermocouples, which are linked to a PC computer. The microstructures are characterized in terms of eutectic volume fraction and second dendrite arm spacing. The experiment result shows that increasing the cooling rate increases the amount of eutectic phase and decreases significantly the second dendrite arm spacing.


2014 ◽  
Vol 682 ◽  
pp. 231-235 ◽  
Author(s):  
Nikita Martyushev ◽  
Yuriy N. Petrenko

The article presents the cooling curves of the tin-leaded bronze melt (consists of 10% of lead, 10% of tin, and 80% of copper) being poured in the moulds of various thermal conductivities: massive cast iron chill mould (with the 1:8 cast mass to mould mass ratio) and graphite mould. The curves were plotted for the moulds previously heated to the temperatures of 20; 200; 400; 600; 800 °С. Plotting of the curves was performed with the use of the device Thermograph designed at Tomsk Polytechnic University. The device records thermal electromotive force values of the chromel-alumel thermocouple and converts them into temperature values. The cooling curves are used to determine melt cooling rates within the temperature range involving the crystallization range. It is shown that under similar conditions the cooling rate when casting in cast iron mould is 30-40% higher than in the case of casting in graphite mould. The data given in the paper indicate that preheating of the mould enables us to considerably reduce the cast cooling rate and prolong the period of the melt being in liquid state. It is worth mentioning that cooling rate values of the preheated and non-heated casting moulds are most vividly observed at the initial moments after the melt pouring. When decreasing the casts’ cooling to 300-400 °С the cooling rates tend to be identical. In the article, the numerical data of cooling rates for various mould heating temperatures are presented.


2007 ◽  
Vol 554 ◽  
pp. 25-30 ◽  
Author(s):  
Wynette Redington ◽  
Murt Redington ◽  
Stuart Hampshire

Rapid cooling rates and quenching have traditionally been associated with glass formation. Hampshire et al. [1] investigated oxynitride glasses cooled in a tungsten resistance furnace at approximately 200oC/min and found that fast cooling rates were only important near the limits of the glass-forming region. In the current work on various M-Si-Al-O-N (M=Y, La, Yb, Nd) systems, it was found that even at a relatively slow cooling rate glass formation was still possible for a wide range of compositions. Different cooling rates were investigated to determine the minimum cooling rate at which a glass will form. Quantitative X-ray analysis of melted compositions indicated the relative amounts of amorphous phase and crystalline phase.


Sign in / Sign up

Export Citation Format

Share Document