scholarly journals Water temperature dynamics and heat transfer beneath the ice cover of a lake

1991 ◽  
Vol 36 (2) ◽  
pp. 324-334 ◽  
Author(s):  
Christopher R. Ellis ◽  
Heinz G. Stefan ◽  
Ruochuan Gu
1984 ◽  
Vol 11 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Darryl J. Calkins

The heat transfer coefficients computed from field data on both ice cover melting and water temperature attenuation are higher than the values one would compute based on extrapolation of previous laboratory flume data. The computed heat transfer coefficients were relatively consistent when calculated from the water temperature decay data. Consistent results were also obtained with one set of very detailed ice cover melting data.The diurnal fluctuation in water temperature from the freezing point to values of 0.4–0.6 °C was associated with the incoming solar radiation and the open water surface area. The measured water temperature distribution beneath the ice cover at a particular cross section varied from 0.2 to 0.6 °C due to the influence of frazil ice and flow distribution. In the open water reaches the water temperature was essentially fully mixed vertically but lateral variation across the river ranged from 0.1 to 0.3 °C.The average daily melting of the ice cover often exceeded 5.0 cm and at some locations the rate was as high as 8 cm/d. The melt was not uniform across the section but was highly dependent upon the flow conditions, velocity, and depth. The ice cover melting for this year only occurred during the daylight hours as the air temperatures dropped below 0 °C at night and the water temperature likewise decayed to its freezing point.


2015 ◽  
Vol 787 ◽  
pp. 238-242 ◽  
Author(s):  
R. Pachaiyappan ◽  
J. Dasa Prakash

Air pre-heater and economizer are heat transfer surfaces in which air temperature and water temperature are raised by transferring heat from other media such as flue gas. Hot air is necessary for rapid combustion in the furnace and also for drying coal in milling plants. So an essential boiler accessory which serves this purpose is air pre-heater. The air pre-heater is not essential for operation of steam generator, but they are used where a study of cost indicates that money can be saved or efficient combustion can be obtained by their use. The decision for its adoption can be made when the financial advantages is weighed against the capital cost of heater. The efficiency of the boiler increases with the increase in the temperature of the combustion air used in the furnace. This is achieved by the increased temperature of the flue gas in the air preheater and economizer zone. This paper deals with the different ways to obtain the maximum heat from the flue gas travelling through the air preheater and the economizer zone to improve the boiler efficiency.


1975 ◽  
Vol 39 (1) ◽  
pp. 93-102 ◽  
Author(s):  
R. M. Smith ◽  
J. M. Hanna

Fourteen male subjects with unweighted mean skinfolds (MSF) of 10.23 mm underwent several 3-h exposures to cold water and air of similar velocities in order to compare by indirect calorimetry the rate of heat loss in water and air. Measurements of heat loss (excluding the head) at each air temperature (Ta = 25, 20, 10 degrees C) and water temperature (Tw = 29–33 degrees C) were used in a linear approximation of overall heat transfer from body core (Tre) to air or water. We found the lower critical air and water temperatures to fall as a negative linear function of MSF. The slope of these lines was not significantly different in air and water with a mean of minus 0.237 degrees C/mm MSF. Overall heat conductance was 3.34 times greater in water. However, this value was not fixed but varied as an inverse curvilinear function of MSF. Thus, equivalent water-air temperatures also varied as a function of MSF. Between limits of 100–250% of resting heat loss the followingrelationships between MSF and equivalent water-air temperatures were found (see article).


2016 ◽  
Vol 20 (5) ◽  
pp. 1681-1702 ◽  
Author(s):  
Madeline R. Magee ◽  
Chin H. Wu ◽  
Dale M. Robertson ◽  
Richard C. Lathrop ◽  
David P. Hamilton

Abstract. The one-dimensional hydrodynamic ice model, DYRESM-WQ-I, was modified to simulate ice cover and thermal structure of dimictic Lake Mendota, Wisconsin, USA, over a continuous 104-year period (1911–2014). The model results were then used to examine the drivers of changes in ice cover and water temperature, focusing on the responses to shifts in air temperature, wind speed, and water clarity at multiyear timescales. Observations of the drivers include a change in the trend of warming air temperatures from 0.081 °C per decade before 1981 to 0.334 °C per decade thereafter, as well as a shift in mean wind speed from 4.44 m s−1 before 1994 to 3.74 m s−1 thereafter. Observations show that Lake Mendota has experienced significant changes in ice cover: later ice-on date(9.0 days later per century), earlier ice-off date (12.3 days per century), decreasing ice cover duration (21.3 days per century), while model simulations indicate a change in maximum ice thickness (12.7 cm decrease per century). Model simulations also show changes in the lake thermal regime of earlier stratification onset (12.3 days per century), later fall turnover (14.6 days per century), longer stratification duration (26.8 days per century), and decreasing summer hypolimnetic temperatures (−1.4 °C per century). Correlation analysis of lake variables and driving variables revealed ice cover variables, stratification onset, epilimnetic temperature, and hypolimnetic temperature were most closely correlated with air temperature, whereas freeze-over water temperature, hypolimnetic heating, and fall turnover date were more closely correlated with wind speed. Each lake variable (i.e., ice-on and ice-off dates, ice cover duration, maximum ice thickness, freeze-over water temperature, stratification onset, fall turnover date, stratification duration, epilimnion temperature, hypolimnion temperature, and hypolimnetic heating) was averaged for the three periods (1911–1980, 1981–1993, and 1994–2014) delineated by abrupt changes in air temperature and wind speed. Average summer hypolimnetic temperature and fall turnover date exhibit significant differences between the third period and the first two periods. Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice thickness) exhibit an abrupt change after 1994, which was related in part to the warm El Niño winter of 1997–1998. Under-ice water temperature, freeze-over water temperature, hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a significant difference in the third period (1994–2014), when air temperature was warmest and wind speeds decreased rather abruptly. The trends in ice cover and water temperature demonstrate responses to both long-term and abrupt changes in meteorological conditions that can be complemented with numerical modeling to better understand how these variables will respond in a future climate.


Author(s):  
Jungho Lee ◽  
Cheong-Hwan Yu ◽  
Sang-Jin Park

Water spray cooling is an important technology which has been used in a variety of engineering applications for cooling of materials from high-temperature nominally up to 900°C, especially in steelmaking processes and heat treatment in hot metals. The effects of cooling water temperature on spray cooling are significant for hot steel plate cooling applications. The local heat flux measurements are introduced by a novel experimental technique in which test block assemblies with cartridge heaters and thermocouples are used to measure the heat flux distribution on the surface of hot steel plate as a function of heat flux gauge. The spray is produced from a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-to-target spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to 45°C. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.


Author(s):  
Jared D. Willard ◽  
Jordan S. Read ◽  
Alison P. Appling ◽  
Samantha K. Oliver ◽  
Xiaowei Jia ◽  
...  

2020 ◽  
Vol 18 (4) ◽  
pp. 578-585
Author(s):  
Madina Shavdinova ◽  
Konstantin Aronson ◽  
Nina Borissova

The condensing unit is one of the most important elements of the steam turbine of a combined heat and power plant. Defects in elements of the condensing unit lead to disturbances in the steam turbine operation, its failures and breakdowns, as well as efficiency losses of the plant. Therefore, the operating personnel need to know the cause of the malfunction and to correct it immediately. There are no diagnostic models of condensers in the Republic of Kazakhstan at the moment. In this regard, a mathematical model of a condenser based on the methodology of Kaluga Turbine Plant (KTP) has been developed. The mathematical model makes it possible to change the input parameters, plot dependency diagrams, and calculate the plant efficiency indicators. The mathematical model of the condenser can be used to research ways for the improvement of the condensing unit efficiency, for diagnostic purposes of the equipment condition, for the energy audit conduction of the plant, and in the training when performing virtual laboratory research. Using static data processing by linear regression method we obtain that the KTP methodology of condenser calculation is fair at cooling water temperature from 20 °C to 24 °C, but at cooling water temperature from 20 °C to 28 °C, the methodology of JSC "All-Russia Thermal Engineering Institute" (JSC "VTI") is used. One of the ways to increase the condenser efficiency has been proposed. It is the heat transfer augmentation with riffling annular grooves on tubes. This method increases the heat transfer coefficient by 2%, reduces the water subcooling of the heating steam by 0.9 °C, and decreases the cooling area by 2%.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1343 ◽  
Author(s):  
Andrei-Emil Briciu ◽  
Dumitru Mihăilă ◽  
Adrian Graur ◽  
Dinu Iulian Oprea ◽  
Alin Prisăcariu ◽  
...  

Cities alter the thermal regime of urban rivers in very variable ways which are not yet deciphered for the territory of Romania. The urban heat island of Suceava city was measured in 2019 and its impact on Suceava River was assessed using hourly and daily values from a network of 12 water and air monitoring stations. In 2019, Suceava River water temperature was 11.54 °C upstream of Suceava city (Mihoveni) and 11.97 °C downstream (Tişăuţi)—a 3.7% increase in the water temperature downstream. After the stream water passes through the city, the diurnal thermal profile of Suceava River water temperature shows steeper slopes and earlier moments of the maximum and minimum temperatures than upstream because of the urban heat island. In an average day, an increase of water temperature with a maximum of 0.99 °C occurred downstream, partly explained by the 2.46 °C corresponding difference between the urban floodplain and the surrounding area. The stream water diurnal cycle has been shifted towards a variation specific to that of the local air temperature. The heat exchange between Suceava River and Suceava city is bidirectional. The stream water diurnal thermal cycle is statistically more significant downstream due to the heat transfer from the city into the river. This transfer occurs partly through urban tributaries which are 1.94 °C warmer than Suceava River upstream of Suceava city. The wavelet coherence analyses and ANCOVA (analysis of covariance) prove that there are significant (0.95 confidence level) causal relationships between the changes in Suceava River water temperature downstream and the fluctuations of the urban air temperature. The complex bidirectional heat transfer and the changes in the diurnal thermal profiles are important to be analysed in other urban systems in order to decipher in more detail the observed causal relationships.


Sign in / Sign up

Export Citation Format

Share Document