Southeast Asia and the Mekong River

2004 ◽  
pp. 126-149
Keyword(s):  
2020 ◽  
Vol 148 ◽  
pp. 06004
Author(s):  
Sokly Siev ◽  
Vannak Ann ◽  
Takashi Nakamura ◽  
Hideto Fujii ◽  
Chihiro Yoshimura

Tonle Sap Lake (TSL) in Cambodia is the largest shallow lake in Southeast Asia. Influenced by flood pulse system of the Mekong River, TSL provides diverse benefits including ecosystem services, ecological functioning, and flood water storage in the floodplains. However, extreme events (e.g., flooding) due to rising water level caused by dam break and/or heavy rainfall in the Mekong River Basin could threaten the ecosystems of the lake, community health and economic growth in the region. Flood mapping under such extreme event could be informative in the flood risk and emergency management. In this study, we aim to develop a flood risk boundary map in TSL using an existing 2D hydrodynamic model (Caesar-Lisflood, CL) with rising water levels estimated by Gumbel distribution. As a result, the extreme water level of 1% chance (or 100-year flood return period) exceeding the annual maximum water level at Prek Kdam station was approximately 11.38 m resulting in the largest inundation area of 15193 km2. Overall, the employed method and flood risk mapping are useful for the decision makers to manage flood risks and emergency in the lake. This is to anticipate the consequences of a possible rising water level by an extreme event.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Matthew David Finnegan ◽  
Christos Gouramanis

AbstractFreshwater plastic pollution is critically understudied in Southeast Asia (SEA). Recent modelling studies indicate that SEA rivers contribute vast quantities of plastic to the world’s oceans, however, these fail to capture the complexity of individual systems. We determine the volume of mismanaged plastic waste (MPW) entering Tonle Sap Basin (TSB)—the largest freshwater lake–river system in SEA, between 2000 and 2030. Using economic, population and waste data at provincial and national levels, coupled with high resolution population and flood datasets, we estimate that ca. 221,700 tons of plastic entered between 2000 and 2020, and 282,300 ± 8700 tons will enter between 2021 and 2030. We demonstrate that policy interventions can reduce MPW up to 76% between 2021 and 2030. The most-stringent scenario would prevent 99% of annual MPW losses by 2030, despite substantially higher waste volumes and population. If successfully implemented, Cambodia will prevent significant losses in natural capital, material value and degradation in TSB worth at least US$4.8 billion, with additional benefits for the Mekong River and South China Sea.


2015 ◽  
Vol 1 (1) ◽  
pp. 20
Author(s):  
Apriwan Apriwan

This paper examines how the environmental issues have been securitized in Southeast Asia. It takes three main issues which are atmosphere pollution and deforestation, water resources, and energy resources. The issues could be a potential conflict that will impact to the regional instability. In order to examine the securitization, it uses constructivism approach and securitization concept. This approach and the concept explain about  the response and the action of the states, individual or collective related to that issues. The environmental issues have been emerging conflict among the states which got the impact. For the atmospher pollution and deforestation, Malaysia and Singapore got a tension with Indonesia as the source of problems. On the case of water crisis occured between Malaysia and Singapore in using water resource from Johor, the same cases also happened among the riparian states with China in using the Mekong River Basin. The complicated conflicts about using energy resources have been happening in South China Sea, Thailand’s Gulf and the Ambalat. On the other hand, the state’s response also could make a cooperation among them, which are billateral, multillateral and regional. Thus, securitization of the environmental issues can be seen on how the states give a perception to the issues within an interaction of social structure. Moreover, the states are seen as social actors which interacted within the context of sharing of knowledge, understanding of material resources and the practice of interaction among the states its self.


2019 ◽  
Vol 11 (22) ◽  
pp. 2709 ◽  
Author(s):  
Chelsea Dandridge ◽  
Venkat Lakshmi ◽  
John Bolten ◽  
Raghavan Srinivasan

Satellite-based precipitation is an essential tool for regional water resource applications that requires frequent observations of meteorological forcing, particularly in areas that have sparse rain gauge networks. To fully realize the utility of remotely sensed precipitation products in watershed modeling and decision-making, a thorough evaluation of the accuracy of satellite-based rainfall and regional gauge network estimates is needed. In this study, Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42 v.7 and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) daily rainfall estimates were compared with daily rain gauge observations from 2000 to 2014 in the Lower Mekong River Basin (LMRB) in Southeast Asia. Monthly, seasonal, and annual comparisons were performed, which included the calculations of correlation coefficient, coefficient of determination, bias, root mean square error (RMSE), and mean absolute error (MAE). Our validation test showed TMPA to correctly detect precipitation or no-precipitation 64.9% of all days and CHIRPS 66.8% of all days, compared to daily in-situ rainfall measurements. The accuracy of the satellite-based products varied greatly between the wet and dry seasons. Both TMPA and CHIRPS showed higher correlation with in-situ data during the wet season (June–September) as compared to the dry season (November–January). Additionally, both performed better on a monthly than an annual time-scale when compared to in-situ data. The satellite-based products showed wet biases during months that received higher cumulative precipitation. Based on a spatial correlation analysis, the average r-value of CHIRPS was much higher than TMPA across the basin. CHIRPS correlated better than TMPA at lower elevations and for monthly rainfall accumulation less than 500 mm. While both satellite-based products performed well, as compared to rain gauge measurements, the present research shows that CHIRPS might be better at representing precipitation over the LMRB than TMPA.


2021 ◽  
Author(s):  
Le Meur Mathieu ◽  
Vo Le Phu ◽  
Gratiot Nicolas

The Mekong River (MR) is recognized the 12th biggest rivers in the world. The Mekong watershed is the biggest one in Southeast Asia (795,000 km2), is densely populated (70 million people), is considered as the most productive one in Southeast Asia and is economically essential to the region. However, nowadays, the Lower Mekong River (LMR) and its delta are facing several emerging and critical anthropogenic stressors (dams construction, climate change, water poor quality, delta sinking). This review attempts to: (i) present the Mekong regional characteristics (geography, topological settings, climatic conditions, hydrology, demographic features and the anthropogenic activities), (ii) present the different factors that endanger the LMR, including the dam’s impacts, the climate change, the delta subsidence, and the degradation of the water quality, (iii) make comparison with different big rivers around the world and (iv) promote future decisions in order to minimize the negative impacts and seek for a trajectory that assures well-being and sustainability. International consultation and cooperation leading to sustainable management is now of a pivotal importance to try to avoid the deterioration of the LMR and its delta.


Sign in / Sign up

Export Citation Format

Share Document