Dark clouds

2020 ◽  
pp. 111-122
Author(s):  
Chris Oakley
Keyword(s):  
2021 ◽  
Vol 503 (4) ◽  
pp. 5274-5290
Author(s):  
A K Sen ◽  
V B Il’in ◽  
M S Prokopjeva ◽  
R Gupta

ABSTRACT We present the results of our BVR-band photometric and R-band polarimetric observations of ∼40 stars in the periphery of the dark cloud CB54. From different photometric data, we estimate E(B − V) and E(J − H). After involving data from other sources, we discuss the extinction variations towards CB54. We reveal two main dust layers: a foreground, E(B − V) ≈ 0.1 mag, at ∼200 pc and an extended layer, $E(B-V) \gtrsim 0.3$ mag, at ∼1.5 kpc. CB54 belongs to the latter. Based on these results, we consider the reason for the random polarization map that we have observed for CB54. We find that the foreground is characterized by low polarization ($P \lesssim 0.5$ per cent) and a magnetic field parallel to the Galactic plane. The extended layer shows high polarization (P up to 5–7 per cent). We suggest that the field in this layer is nearly perpendicular to the Galactic plane and both layers are essentially inhomogeneous. This allows us to explain the randomness of polarization vectors around CB54 generally. The data – primarily observed by us in this work for CB54, by A. K. Sen and colleagues in previous works for three dark clouds CB3, CB25 and CB39, and by other authors for a region including the B1 cloud – are analysed to explore any correlation between polarization, the near-infrared, E(J − H), and optical, E(B − V), excesses, and the distance to the background stars. If polarization and extinction are caused by the same set of dust particles, we should expect good correlations. However, we find that, for all the clouds, the correlations are not strong.


2020 ◽  
Vol 500 (3) ◽  
pp. 3414-3424
Author(s):  
Alec Paulive ◽  
Christopher N Shingledecker ◽  
Eric Herbst

ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.


2011 ◽  
Vol 741 (2) ◽  
pp. 120 ◽  
Author(s):  
J. M. Rathborne ◽  
G. Garay ◽  
J. M. Jackson ◽  
S. Longmore ◽  
Q. Zhang ◽  
...  

2016 ◽  
Vol 363 ◽  
pp. 119-120 ◽  
Author(s):  
Pulikottil Wilson Vinny ◽  
Venugopalan Y. Vishnu ◽  
Vivek Lal

1991 ◽  
Vol 252 (2) ◽  
pp. 234-245 ◽  
Author(s):  
A. J. Adamson ◽  
D. C. B. Whittet ◽  
W. W. Duley

2004 ◽  
Vol 82 (6) ◽  
pp. 740-743 ◽  
Author(s):  
P A Feldman ◽  
R O Redman ◽  
L W Avery ◽  
J Di Francesco ◽  
J D Fiege ◽  
...  

The line profiles of dense cores in infrared-dark clouds indicate the presence of young stellar objects (YSOs), but the youth of the YSOs and the large distances to the clouds make it difficult to distinguish the outflows that normally accompany star formation from turbulence within the cloud. We report here the first unambiguous identification of a bipolar outflow from a young stellar object (YSO) in an infrared-dark cloud, using observations of SiO to distinguish the relatively small amounts of gas in the outflow from the rest of the ambient cloud. Key words: infrared-dark clouds, star formation, bipolar outflows, SiO, G81.56+0.10.


2017 ◽  
Vol 13 (S332) ◽  
pp. 139-152
Author(s):  
Jonathan C. Tan

AbstractI review massive star formation in our Galaxy, focussing on initial conditions in Infrared Dark Clouds (IRDCs), including the search for massive pre-stellar cores (PSCs), and modeling of later stages of massive protostars, i.e., hot molecular cores (HMCs). I highlight how developments in astrochemistry, coupled with rapidly improving theoretical/computational and observational capabilities are helping to improve our understanding of the complex process of massive star formation.


2009 ◽  
Vol 499 (1) ◽  
pp. 149-161 ◽  
Author(s):  
T. Vasyunina ◽  
H. Linz ◽  
Th. Henning ◽  
B. Stecklum ◽  
S. Klose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document