Wind Resistance

Author(s):  
Gary Natriello
Keyword(s):  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Renda Zhao ◽  
Yuan Yuan ◽  
Xing Wei ◽  
Ruili Shen ◽  
Kaifeng Zheng ◽  
...  

AbstractBridge construction is one of the cores of traffic infrastructure construction. To better develop relevant bridge science, this paper introduces the main research progress in China and abroad in 2019 from 13 aspects, including concrete bridges and the high-performance materials, the latest research on steel-concrete composite girders, advances in box girder and cable-supported bridge analysis theories, advance in steel bridges, the theory of bridge evaluation and reinforcement, bridge model tests and new testing techniques, steel bridge fatigue, wind resistance of bridges, vehicle-bridge interactions, progress in seismic design of bridges, bridge hydrodynamics, bridge informatization and intelligent bridge and prefabricated concrete bridge structures.


1987 ◽  
Vol 14 (3) ◽  
pp. 418-418
Author(s):  
Theodore Stathopoulos ◽  
Appupillai Baskaran
Keyword(s):  

2018 ◽  
Vol 216 ◽  
pp. 02027 ◽  
Author(s):  
Khabibulla Turanov ◽  
Andrey Gordienko

The purpose of this paper is to calculate kinematic parameters of a railway car moving with a tailwind for designing a classification hump. The calculation of kinematic parameters is based on the d'Alembert principle, and the physical speed and distance formula for uniformly accelerated or uniformly decelerated motions of a body. By determining a difference between two components - gravitational force of a car and the resistance force of all kinds (frictional resistance, air and wind resistance, resistance from switches and curves, snow and frost resistance), which take place at different sections of a hump profile, the authors calculated the car acceleration at various types of car resistance, as well as time and speed of its movement. Acceleration, time and speed were plotted as a function of the length of a hump profile section. The research results suggest that permissible impact velocities of cars can be achieved by changing profiles of projected hump sections or by using additional hump retarders.


1991 ◽  
Vol 15 (1) ◽  
pp. 24-37 ◽  
Author(s):  
C. A. McLaurin ◽  
C. E. Brubaker

Wheelchair biomechanics involves the study of how a wheelchair user imparts power to the wheels to achieve mobility. Because a wheelchair can coast, power input need not be continuous, but each power strike can be followed by a period of recovery, with the stroking frequency depending on user preferences and the coasting characteristics of the wheelchair. The latter is described in terms of rolling resistance, wind resistance and the slope of the surface. From these three factors the power required to propel the wheelchair is determined, and must be matched by the power output of the user. The efficiency of propulsion is the ratio of this power output to the metabolic cost and is typically in the order of 5% in normal use. The features required in a wheelchair depend upon user characteristics and intended activities. The ideal wheelchair for an individual will have the features that closely match these characteristics and activities. Thus prescription is not just choosing a wheelchair, but choosing the components of the wheelchair that best serve the intended purpose. In this paper, each component is examined for available options and how these options effect the performance of the wheelchair for the individual. The components include wheels, tyres, castors, frames, bearings, materials, construction details, seats, backrests, armrests, foot and legrests, headrests, wheel locks, running brakes, handrims, levers, accessories, adjustments and detachable parts. Each component is considered in relation to performance characteristics including rolling resistance, versatility, weight, comfort, stability, maneouvrability, transfer, stowage, durability and maintenance. Where they exist, wheelchair standards are referred to as a source of information regarding these characteristics.


Author(s):  
Yongqiang Hou ◽  
Wei Huang ◽  
Hao Zhou ◽  
Feng Gu ◽  
Yanchun Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document