scholarly journals Critical Temperature for Inter-Laminar Shear Strength and Effect of Exposure Time of FRP Rebars

2013 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Do-Young Moon
2021 ◽  
Vol 1057 (1) ◽  
pp. 012016
Author(s):  
P Madhavi ◽  
K Chandra Shekar ◽  
K Poojith ◽  
P Sai Kumar ◽  
P Usman Khan ◽  
...  

2013 ◽  
Vol 671-674 ◽  
pp. 474-478 ◽  
Author(s):  
Kai Xiang ◽  
Guo Hui Wang ◽  
Bi Zhao

Shear strength and stiffness of fire-damaged reinforced concrete (RC) beams were researched. The nonlinear finite element method (FEM) was developed to simulate shear strength of fire-damaged RC beams. Considering mechanical properties deterioration of concrete and steel reinforcing bar, the parameters of fire-damaged RC beams, including fire exposure time, shear span to depth ratios, concrete strength, diameters of stirrups and spacing of stirrups, were analyzed. Based on numerical analysis, the change of shear strength and stiffness of fire-damaged RC beams were identified. The results showed that shear strength and stiffness of fire-damaged RC beams changed under different parameters. With increase of fire exposure time or increase of shear span to depth ratio or decrease of concrete strength, shear strength and stiffness of fire-damaged RC beams descended obviously. With decrease of diameters of stirrups or increase of spacing of stirrups, shear strength of fire-damaged RC beams descended gradually, but stiffness of fire-damaged RC beams had little change.


Author(s):  
Chandan Kumar ◽  
K.K. Singh ◽  
Prashant Rawat ◽  
Akash Deep ◽  
Rohit Pratyush Behera

Author(s):  
X. F. Ang ◽  
G. G. Zhang ◽  
J. Wei ◽  
Z. Chen ◽  
C. C. Wong

Low temperature interconnection is a critical component of 3D integration and packaging technology. In this study, we investigate the characteristics of thermocompression metal bonding using gold stud bumps formed on Si die in the temperature range of 100-300 °C and the pressure range of 200–600 g/bump. We observed a critical bonding temperature below which bonding did not occur and above which shear strength improves linearly with bonding temperature. This critical temperature can be interpreted to be the onset of the break-up of organic barrier films while the linear rise in shear strength can be attributed to the increase in the true bonded area. Above this critical temperature, the tensile strength of the Au-Au bond exhibits a maximum with increasing bonding pressure. This can be related to the pressure dependence of the interfacial stress distribution and its effect on unbonded radius, r. SEM fractographs of the failed surfaces suggest a combination of cohesive and adhesive failures along the bonded interface.


Author(s):  
Takahiro MIURA ◽  
Daisuke TABUCHI ◽  
Takao SAJIMA ◽  
Toshiro DOI ◽  
Osamu OHNISHI
Keyword(s):  

2003 ◽  
Vol 2003.1 (0) ◽  
pp. 355-356 ◽  
Author(s):  
Masaaki MISUMI ◽  
Masafumi OHKUBO ◽  
Go AOYAMA

2002 ◽  
Vol 2002 (0) ◽  
pp. 287-288
Author(s):  
Yasuhiro KOBASHI ◽  
Masaaki MISUMI ◽  
Masafumi OHKUBO

Sign in / Sign up

Export Citation Format

Share Document