Hydrocarbons during energy transition: from peak oil supply to peak oil demand and investment? Is energy security at risk?

2021 ◽  
pp. 376-392
Author(s):  
Cyril Widdershoven
2021 ◽  
Vol 73 (06) ◽  
pp. 10-11
Author(s):  
Dwayne Purvis

As the world reaches a tipping point in its will to address climate change, the industry must find a new way forward, especially in the United States. Many are right to say that oil and gas are not going away; the transition is planned to take 30 years or more and will not decline to zero production. This fact, though, obscures the reality that peaking, then declining, demand for oil—gas is another story—will structurally change and globally redistribute the industry’s exploration and employment. The story of oil supply and demand began its race to the top 150 years ago. “Shortage” and “glut” have meant that paired growth got out of sync, not that there was a real loss of production. For many decades the world has needed about 1 million B/D more each year than the previous year, but on a percentage basis growth has slowed. At the same time supply from previous years declines about 5 to 6% per year, arguably higher in recent years. The treadmill for new supply has been running hot for decades. All major public forecasts in the past year call for oil demand to plateau between now and about 2030 when accounting for ongoing changes to policy. (To be clear, some show a peak in the 2030s in “business as usual” cases, but they also show even sooner peaks if policy and demand changes accelerate). BP’s Energy Outlook 2020 from last fall took the bold—and well-argued—position that peak oil demand is today and that it is only a question of how fast demand declines. “Peak” demand isn’t really a peak like the Matterhorn; it is flatter like a weathered jebel. We know this from the example of the peak oil demand experienced by the developed world. We also know from that experience that forecasting agencies failed to predict the peak OECD oil demand in 2005 literally by decades even as demand turned down. Reversal of demand growth presents a figurative and mathematical inflection point. Though existing production continues, growth becomes negative, and the pace of the new-supply treadmill plummets. When the need for new supply approximately halves, the Pareto principle tells us that the number of new projects required will fall more than half. Thus, the need for those industry professionals preferentially tasked with finding new oil supply—geophysicists, exploration geologists, drillers, reservoir engineers, landmen—may fall quickly. Other disciplines like operations that service existing production will face only the headwinds of cost reductions and then the long, slow slide toward mid-century targets. The United States via its swarm of large and small companies has dominated the global supply story for more than a decade with its unique shale revolution, but it had previously shriveled to a second-tier producer. Fig. 1 shows 55 years of oil production history. Fig. 1a shows the US supply deconstructed to its functional parts while Fig. 1b shows ascendent producers on the same scales.


2011 ◽  
Vol 4 (2) ◽  
pp. 27-42 ◽  
Author(s):  
Chin-Ho Cho ◽  
Yun-Peng Chu ◽  
Hao-Yen Yang

2021 ◽  
Vol 21 (4) ◽  
pp. 772-784
Author(s):  
Yury V. Borovsky

In the early 2020s the worlds transition from carbon-intensive to climate-neutral energy use has already become a discernible and a difficult-to-reverse process. With Joe Bidens election as US president, the United States have returned to the Paris Climate Agreement and have become a key driver of this process (along with the EU and China). As a result, the international community has reached a consensus on the ongoing energy transition. This process will require considerable effort and may take several decades. Nevertheless, the impact of energy transition on traditional approaches to energy security, which emerged largely as a result of the global oil crises of the 1970s and 1980s and are centered around the supply of fossil fuels, is already a relevant research topic. This problem is examined relying on the relevant terminological, theoretical and factual material. The article concludes that energy transition will ultimately undermine the carbon paradigm that has underpinned energy security policies since the 1970s. Rapid development of renewable and other low-carbon energy sources will certainly remove key energy security risks of energy importers and, possibly, allow them to achieve energy independence. However, a post-carbon era may also generate new risks. For countries that rely heavily on oil, gas and coal exports, energy transition will result in the loss of markets and revenues. It may present an energy security threat for them as well as it will require a costly and technologically complex process of the energy sector decarbonization. Some exporters, especially those with high fuel rents and insufficient financial reserves, may face serious economic and social upheavals as a result of energy transition. The EU and the US energy transition policies reflect provisions of all three fundamental international relations theoretical paradigms, including realism. This means that the EU and the US policy, aimed at promoting climate agenda, may be expected to be rather tough and aggressive. China as the third key player in energy transition is still following a liberal course; however, it may change in the future.


2021 ◽  
Vol 13 (20) ◽  
pp. 11274
Author(s):  
John D. Graham ◽  
John A. Rupp ◽  
Eva Brungard

Considering the quest to meet both sustainable development and energy security goals, we explore the ramifications of explosive growth in the global demand for lithium to meet the needs for batteries in plug-in electric vehicles and grid-scale energy storage. We find that heavy dependence on lithium will create energy security risks because China has a dominant position in the lithium supply chain and both Europe and North America seek to curtail reliance on China throughout their supply chains. We also find that efforts to expand lithium mining have been much less successful in Chile, the United States, and Europe than in Australia. Local communities resist licensing of new lithium mines due to a variety of environmental, social, and economic concerns. There are alternative technologies that may make lithium mining more sustainable such as direct lithium extraction, but the timing of commercialization of this process is uncertain. Progress is also being made in battery recycling and in alternative battery designs that do not use lithium. Such advances are unlikely to attenuate the global rate of growth in lithium demand prior to 2030. We conclude that tradeoffs between sustainability and energy security are real, especially in the next decade.


2013 ◽  
Vol 5 (4) ◽  
pp. 1-28 ◽  
Author(s):  
Christiane Baumeister ◽  
Gert Peersman

Using time-varying BVARs, we find a substantial decline in the short-run price elasticity of oil demand since the mid-1980s. This finding helps explain why an oil production shortfall of the same magnitude is associated with a stronger response of oil prices and more severe macroeconomic consequences over time, while a similar oil price increase is associated with smaller output effects. Oil supply shocks also account for a smaller fraction of real oil price variability in more recent periods, in contrast to oil demand shocks. The overall effects of oil supply disruptions on the US economy have, however, been modest. (JEL E31, E32, Q41, Q43)


2017 ◽  
Vol 22 (4) ◽  
pp. 805-836 ◽  
Author(s):  
Gerard van der Meijden ◽  
Sjak Smulders

The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a nonrenewable resource and an alternative energy source in a market economy model of endogenous growth through expanding varieties. During the energy transition, technological progress is nonmonotonic over time: It declines initially, starts increasing when the economy approaches the regime shift, and jumps down once the resource stock is exhausted. A moment of peak-oil does no longer necessarily occur, and simultaneous use of the resource and the alternative energy source will take place if the return to innovation becomes too low. Subsidies to research and development (R&D) and to renewables production speed up the energy transition, whereas a tax on fossil fuels postpones the switch to renewable energy.


Sign in / Sign up

Export Citation Format

Share Document