scholarly journals Formulation, Development and Evaluation of Topiramate Loaded Niosomes for the Treatment of Epilepsy

Topiramate (TPM) is an anti-epileptic drug used in the treatment of epilepsy and seizures. The study was designed with three aims. First, to enhance the solubility and bioavailability of BCS class III drug TPM; second, to ease administration of the formulation to the epileptic patient, during an attack, and third, to decrease the dose of drug for enduring treatment. Formulation of TPM niosomes was optimized by changing the concentration of Tween, Labrafil and cholesterol using response surface design. Further the TPM niosomes were prepared by using ether injection method. The formulation was then evaluated for vesicle size, entrapment efficiency and in-vitro drug release study. FTIR and DSC studies were performed for pure drug and optimized batch. The vesicle size of the optimized batch was found to be 0. 35 nm. The %entrapment efficiency and %drug release of optimized batch was found to be 94.64% and 92.027% respectively. From the present study it can be concluded that the developed niosomes of TPM has shown great potential in treatment of epilepsy.

Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (09) ◽  
pp. 83-85
Author(s):  
A Ambavkar ◽  
◽  
N. Desai

The objective of the study was to develop and evaluate nanolipid carriers based in situ gel of Carbamazepine, for brain delivery through intranasal route. The non – invasive nasal route can provide rapid delivery of drugs directly to the central nervous system by bypassing the blood brain barrier. The nanolipid carriers of carbamazepine as in situ nasal gel can prolong the drug release for control of repetitive seizures and were prepared by Phase Inversion Temperature technique. The retention of the carriers in the nasal cavity was improved by using Poloxamer 407 as thermoresponsive and Carbopol 974P as mucoadhesive gelling polymers, respectively. The developed gel was evaluated for particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, mucoadhesive and thermoresponsive behaviour, in vitro drug release, ex vivo permeation and nasociliotoxicity. The gel showed sustained release over prolonged periods and was found to be non-toxic to the sheep nasal mucosa.


2021 ◽  
Vol 62 (3) ◽  
pp. 290-304
Author(s):  
Moreshwar Patil ◽  
Prashant Pandit ◽  
Pavan Udavant ◽  
Sandeep Sonawane ◽  
Deepak Bhambere

Introduction: Etodolac is used in the treatment of acute pain and inflammation. It has low solubility because of high hydrophobicity and it is reported that upon oral administration shows gastric disturbances. This encourages the development of topical vesicular formulation. Method: In this work we used coacervation-phase separation method for the development of etodolac loaded vesicular system by using non-ionic surfactants, cholesterol and soya lecithin. Central composite design (rotatble) was used to optimize the concentrations of soy lecithin, surfactant and cholesterol. The prepared formulations were characterized by number of vesicles formed, vesicle size, zeta potential, entrapment efficiency, in-vitro permeation, ex-vivo permeation and anti-inflammatory study. Results: Etodolac was successfully entrapped in all formulations having efficiency in the range of 74.36% to 90.85%, which was more at 4 °C than room temperature. When hydrated with water; niosome in the range of 54 to 141 (per cubic mm) were spontaneously produced. The results of in-vitro diffusion study revealed that etodolac was released in the range of 71.86 to 97.16% over a period of 24 hrs. The average vesicle size of optimized formulation was found 211.9 nm with PDI of 0.5. The observed responses i.e. % encapsulation efficiency and drug release were 74.12 and 95.08 respectively. The zeta potential was -19.4mV revealed the stability of formulation which was further confirmed by no changes in drug content and drug release after stability studies. The % inhibition in paw volume was 40.52% and 43.61% for test and marketed proniosomal gel. Conclusion: Proniosomal gel formulation was stable and could enhance skin delivery of etodolac because of excellent permeation capability of vesicular system.


Author(s):  
Dinesh V. Panpaliya ◽  
Atish Y. Sahare ◽  
Priyanka Lanje ◽  
Pooja Dhoke

The aim of the present work was to develop and evaluate of oral microsphere of Levetiracetam to reduce the frequency of dosing by achieving 12 hours sustained drug release. The microsphere formed will also mask the bitter taste of the drug and thus increase the compatibility of the drug with the patients. Levetiracetam is a second-generation anti-epileptic agent useful in the treatment of partial onset and monoclinic seizures. It has a short half life of 7 hours and its recommended dose is 500 mg twice a daily. Microspheres are suitable drug delivery system for such drug candidate. For these reasons it is must to formulate a suitable dosage form by which it will be easier to administer the dose and also to get a sustained drug release hence microsphere was prepared using solvent evaporation method. Preformulation studies were carried out to rule out any drug polymer interaction by FTIR technique. In this study formulation was done solvent evaporation method using different percentage of HPMC– K 100, HPMC- K 15 and coated with Eudragit S100. Drug, polymer and physical mixture were evaluated for in compatibility study by Fourier transforms infrared spectroscopy. All the batches of microsphere (F1 to F5) were subjected for in vitro dissolution. Microsphere was evaluated for surface morphology, micromeritics properties, entrapment efficiency and in vitro drug release. The entrapment efficiency of microsphere ranged from 71.16%-73.66%. The size of the prepared microsphere ranges between 42.8 µm to 55.64 µm which was found to increase with increase in RPM at same polymer ratio. Micromeritics studies showed good flow properties. Among the microsphere batches, F5 was observed as an optimized batch as its formulation with polymer i.e. Eudragit-S 100 and HPMC-K 100 was found to be release in sustained manner. The F-5 batch shows is 79.45% drug release at the end of 7 hrs and its stability study indicate that these microspheres were stable at selected temperature and humidity


Author(s):  
ANKITA TIWARI ◽  
SANJAY K. JAIN

Objective: The present investigation aimed to develop and characterize Eudragit S-100 coated alginate beads bearing oxaliplatin loaded liposomes for colon-specific drug delivery. Methods: Liposomes were formulated by the thin-film hydration method. The process and formulation variables were optimized by Box-Behnken design (BBD) with the help of Design-Expert® Software. Three independent variables taken were HSPC: Chol molar ratio (X1), hydration time (X2), and sonication time (X3). The response variables selected were entrapment efficiency of oxaliplatin, polydispersity index, and vesicle size. Results: The liposomes possessed an average vesicle size of 110.1±2.8 nm, PDI 0.096±0.3, zeta potential of-6.70±1.4 mV, and entrapment efficiency of 27.65%. The beads were characterized for their size, in vitro drug release, and swelling index. The degree of swelling of the beads was found to be 2.3 fold higher at pH 7.4 than at pH 1.2. The in vitro drug release depicted a sustained drug release in 48 h. Conclusion: The outcomes of the study proposed that the developed system can be effectively used for site-specific drug delivery to the colon via the oral route.


Author(s):  
Chandani Makvana ◽  
Satyajit Sahoo

The present study was aimed to formulate, comparatively evaluate and optimize multiple lipid drug carriers of valsartan for oral controlled release to overcome the problems associated with the drug such as bioavailability, to reduce the dosage regimen, half life and to determine the appropriateness of niosomal formulation as a drug carrier. Ether injection method was chosen for the formulation of physically and chemically stable niosomes of valsartan. The formulation and process parameters were optimized by manufacturing placebo niosomes. Than drug loaded niosome was prepared by varying the concentration of span 60. The prepared nine formulations were evaluated for various parameters. Placebo niosomes were evaluated for appearance, odour, texture, creaming volume, pH and changes after 15 days. The medicated nine formulations were evaluated for organoleptic properties (appearance/color, odour), pH, total drug content, entrapment efficiency, mean particle size and polydispersibility index, zeta potential and In-vitro drug release. All formulations were off-white in color, odourless, and fluid in nature. It was stable and did not show sedimentation. The pH was found to be in the range of 4.6-5.4. Drug content was found in the range of 89.13 to 99.52. The Entrapment efficiency was found in range of 79.05 to 98.24. The mean vesicle size of drug loaded niosomes of the different batches ranged between 2.52-3.42μm. The polydispersvity index was in the range of 0.325 to 0.420 which indicates a narrow vesicle size distribution. The values of zeta potential were in the range of -20.29 mV to -30.55 mV which indicates that niosome had sufficient charge and mobility to inhibit aggregation of vesicles. All the nine formulations shows constant drug release in controlled manner up to 24 h. Formulation V7 was considered to be the best formulation as the % drug content (99.52 ± 0.97), % entrapment efficiency (98.24 ± 1.50) and % drug release at the end of 24th h (98.55) were high for V7. The optimized formulation V7 showed higher degree of correlation coefficient (r2) 0.9805 which indicates process of constant drug release from dosage form. The present study concludes that the prepared niosome is a convenient and efficiency carrier for the delivery of antihypertensive drug. Besides this, it provided controlled delivery of drug.


2020 ◽  
Vol 10 (6-s) ◽  
pp. 83-88
Author(s):  
Priyam Chaurasiya ◽  
Ritesh Agarwal ◽  
Kavita R. Loksh

Objective: The objective of present study is to develop and evaluate the elastic liposomes of metronidazole so as to provide the sustained release and improve its bioavailability. Methods: Elastic liposomes were prepared by rotary evaporation method using Span 80 and Span 60 as a surfactants. The prepared elastic liposomes were evaluated for entrapment efficiency, vesicle size, In vitro drug release. Results: The drug release profiles from different elastic liposomes-in-vehicle formulations were in agreement with the physicochemical properties of the formulations. The formulation prepared showed an average vesicle size 185.4nm. The amount of drug entrapped into the elastic liposomes formulations was determined. The entrapment efficiency was found to be 73.45±0.78 %. A good amount of drug was entrapped in the liposome formulations prepared. Based on different parameters formulations of batch TG2 was found to be the best formulations. Stability study was performed on the selected formulation TG2. When the regression coefficient values of were compared, it was observed that ‘r’ values of first order was maximum i.e. 0.993 hence indicating drug release from formulations was found to follow Korsmeyer Peppas model release kinetics Conclusion: These results indicate that elastic liposome can function as probable drug delivery systems to enhance transdermal permeation of metronidazole for treating the topical infections. Keywords: Metronidazole, Elastic liposomes, Topical administration, Skin infection


Author(s):  
Swapna Velivela ◽  
Nikunja B Pati ◽  
B. Ravindra Babu

Temozolomide is an anti-cancer drug; it was encapsulated in liposomal intravenous application. To avoid the side effects and to target the drug to the specific site, we have formulated liposomal formulation of Temozolomide. The liposomal were prepared by dried thin film hydration technique using rotary evaporator with drug and Soya phosphatidyl choline as carrier. The prepared liposomes were characterized for size, shape, % entrapment efficiency, in-vitro drug release and physical stability. The evaluated batches showed good physicochemical characteristics. The maximum encapsulation efficiency of Temozolomide was achieved with formulation TMZ 6 with 40.19% and the in-vitro drug release is 64.94%. Based on the results it can be concluded that TMZ 6 was selected as optimized formulation and the optimized formulation Optimized formulation follows zero order release kinetics and follow super case II transport when it applied to Korsmeyer-Pepps model for mechanism of drug release.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 831
Author(s):  
Tatyana Kovshova ◽  
Nadezhda Osipova ◽  
Anna Alekseeva ◽  
Julia Malinovskaya ◽  
Alexey Belov ◽  
...  

Targeted delivery of doxorubicin still poses a challenge with regards to the quantities reaching the target site as well as the specificity of the uptake. In the present approach, two colloidal nanocarrier systems, NanoCore-6.4 and NanoCore-7.4, loaded with doxorubicin and characterized by different drug release behaviors were evaluated in vitro and in vivo. The nanoparticles utilize a specific surface design to modulate the lipid corona by attracting blood-borne apolipoproteins involved in the endogenous transport of chylomicrons across the blood–brain barrier. When applying this strategy, the fine balance between drug release and carrier accumulation is responsible for targeted delivery. Drug release experiments in an aqueous medium resulted in a difference in drug release of approximately 20%, while a 10% difference was found in human serum. This difference affected the partitioning of doxorubicin in human blood and was reflected by the outcome of the pharmacokinetic study in rats. For the fast-releasing formulation NanoCore-6.4, the AUC0→1h was significantly lower (2999.1 ng × h/mL) than the one of NanoCore-7.4 (3589.5 ng × h/mL). A compartmental analysis using the physiologically-based nanocarrier biopharmaceutics model indicated a significant difference in the release behavior and targeting capability. A fraction of approximately 7.310–7.615% of NanoCore-7.4 was available for drug targeting, while for NanoCore-6.4 only 5.740–6.057% of the injected doxorubicin was accumulated. Although the targeting capabilities indicate bioequivalent behavior, they provide evidence for the quality-by-design approach followed in formulation development.


2017 ◽  
Vol 9 (6) ◽  
pp. 21 ◽  
Author(s):  
Rajalakshmi S. V. ◽  
Vinaya O. G.

Objective: Aim of the study was to formulate, evaluate and optimize medicated Lip rouge containing acyclovir encapsulated inside a novel vesicular carrier, niosome so that the formulation can improve its membrane penetration. Formulating as a cosmetic Lip rouge formulation will also improve patient compliance in the treatment of herpes labialis.Methods: Acyclovir niosomes were prepared by thin film hydration method. Niosomes were evaluated and were optimized by considering the entrapment efficiency and in vitro release profile. The optimized niosomes were incorporated into lipstick, lip balm and lip rouge for selecting the best lip formulation. Based on the in vitro release profile, ease of application and properties of prepared formulations lip rouge was selected and further evaluations were carried out.Results: Among the six formulations of niosomes NF2 has showed 88.49 % entrapment efficiency and 86.97% cumulative drug release in 8 h. The formulation was optimized considering both entrapment efficiency and in vitro release. The optimized formulation of niosomes was incorporated into Lipstick, lip balm and lip rouge. The evaluation results of lipstick, lip balm and lip rouge for in vitro release suggested lip rouge as the best formulation. The percentage cumulative release of drug from optimized lip rouge at the end of 8 h was 84.77%. The percentage cumulative drug release in ex vivo studies for 8 h was 60.88 %.Conclusion: The results suggested that prepared lip rouge containing acyclovir niosomes can effectively deliver the drug than the marketed acyclovir cream and successful therapy of Recurrent Herpes labialis can be achieved.


Sign in / Sign up

Export Citation Format

Share Document