scholarly journals A unified bijective method for maps: application to two classes with boundaries

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Olivier Bernardi ◽  
Eric Fusy

International audience Based on a construction of the first author, we present a general bijection between certain decorated plane trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g. Eulerian maps, simple triangulations,...) are in bijection with a subset of these orientations, and our construction restricts in a simple way on the subset. This gives a general bijective strategy for classes of maps. As a non-trivial application of our method we give the first bijective proofs for counting (rooted) simple triangulations and quadrangulations with a boundary of arbitrary size, recovering enumeration results found by Brown using Tutte's recursive method. En nous appuyant sur une construction du premier auteur, nous donnons une bijection générale entre certains arbres décorés et certaines orientations de cartes planaires sans cycle direct. De nombreuses classes de cartes (par exemple les eulériennes, les triangulations) sont en bijection avec un sous-ensemble de ces orientations, et notre construction se spécialise de manière simple sur le sous-ensemble. Cela donne un cadre bijectif général pour traiter les familles de cartes. Comme application non-triviale de notre méthode nous donnons les premières preuves bijectives pour l'énumération des triangulations et quadrangulations simples (enracinées) ayant un bord de taille arbitraire, et retrouvons ainsi des formules de comptage trouvées par Brown en utilisant la méthode récursive de Tutte.


2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Hamid Mraoui ◽  
Driss Sbibih

International audience In this paper, we present a quite simple recursive method for the construction of classical tensor product Hermite spline interpolant of a function defined on a rectangular domain. We show that this function can be written under a recursive form and a sum of particular splines that have interesting properties. As application of this method, we give an algorithm which allows to compress Hermite data. In order to illustrate our results, some numerical examples are presented. Dans ce travail, nous présentons une méthode simple permettant de construire le produit tensoriel des interpolants splines d'Hermite d'une fonction définie sur un domaine rectangulaire. Nous montrons que cette fonction peut être décrite de manière récursive sous la forme d'une somme de fonctions splines qui vérifiant des propriétés intéressantes. Comme application de cette décomposition, nous décrivons un algorithme qui permet de compresser des données d'Hermite. Pour illustrer nos résultats théoriques, nous donnons quelques exemples numériques.



2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Cedric Chauve

International audience Constellations are colored planar maps that generalize different families of maps (planar maps, bipartite planar maps, bi-Eulerian planar maps, planar cacti, ...) and are strongly related to factorizations of permutations. They were recently studied by Bousquet-Mélou and Schaeffer who describe a correspondence between these maps and a family of trees, called Eulerian trees. In this paper, we derive from their result a relationship between planar constellations and another family of trees, called stellar trees. This correspondence generalizes a well known result for planar cacti, and shows that planar constellations are colored Lagrangian objects (that is objects that can be enumerated by the Good-Lagrange formula). We then deduce from this result a new formula for the number of planar constellations having a given face distribution, different from the formula one can derive from the results of Bousquet-Mélou and Schaeffer, along with systems of functional equations for the generating functions of bipartite and bi-Eulerian planar maps enumerated according to the partition of faces and vertices.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Marie Albenque ◽  
Jérémie Bouttier

International audience We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance. Nous considérons le problème du comptage des constellations planaires à deux points marqués à distance donnée. Notre approche repose sur une correspondance combinatoire entre cette famille de constellations et celle, plus simple, des constellations enracinées. La correspondance peut être reformulée algébriquement en termes de fractions multicontinues et de déterminants de Hankel généralisés. Comme application, nous obtenons par une preuve combinatoire la série génératrice des triangulations eulériennes à deux points marqués à distance donnée.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Yan X Zhang

International audience We explore the enumeration of some natural classes of graded posets, including $(2 + 2)$-avoiding graded posets, $(3 + 1)$-avoiding graded posets, $(2 + 2)$- and $(3 + 1)$-avoiding graded posets, and the set of all graded posets. As part of this story, we discuss a situation when we can switch between enumeration of labeled and unlabeled objects with ease, which helps us generalize a result by Postnikov and Stanley from the theory of hyperplane arrangements, answer a question posed by Stanley, and see an old result of Klarner in a new light. Nous étudions l’énumération de certaines classes naturelles de posets gradués, y compris ceux qui évitent les motifs $(2+2)$, $(3+1)$, $(2+2)$ et $(3+1)$, et l’ensemble de tous les posets gradués. En particulier, nous considérons une situation où l’énumération d’objets marqués et non marqués sont reliées de façon simple, ce qui nous permet de généraliser un résultat de Postnikov et Stanley en théorie des arrangements d’hyperplans, répondre à une question posée par Stanley, et voir sous un nouveau jour un vieux résultat de Klarner et Kreweras.



2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Eric Fusy

International audience This article describes new bijective links on planar maps, which are of incremental complexity and present original features. The first two bijections $\Phi _{1,2}$ are correspondences on oriented planar maps. They can be considered as variations on the classical edge-poset construction for bipolar orientations on graphs, suitably adapted so as to operate only on the embeddings in a simple local way. In turn, $\Phi_{1,2}$ yield two new bijections $F_{1,2}$ between families of (rooted) maps. (i) By identifying maps with specific constrained orientations, $\Phi_2 \circ \Phi_1$ specialises to a bijection $F_1$ between 2-connected maps and irreducible triangulations; (ii) $F_1$ gives rise to a bijection $F_2$ between loopless maps and triangulations, observing that these decompose respectively into 2-connected maps and into irreducible triangulations in a parallel way. Cet article décrit de nouveaux liens bijectifs sur les cartes planaires. Nos constructions sont de complexité croissante et présentent des caractéristiques originales. Les deux premières bijections $\Phi _{1,2}$ portent sur des cartes orientées. Elle peuvent être vues comme des variations sur une construction classique de posets sans $N$ à partir d'orientations bipolaires, adaptées ici pour opérer de manière très simple sur le plongement. Les bijections $\Phi _{1,2}$ entrainent à leur tour deux nouvelles bijections $F_{1,2}$ entre familles de cartes (enracinées). (i) En identifiant les cartes avec certaines orientations contraintes, $\Phi_2 \circ \Phi_1$ se spécialise en une bijection $F_1$ entre cartes 2-connexes et triangulations irréductibles, (ii) $F_1$ induit une bijection $F_2$ entre cartes sans boucles et triangulations, qui se décomposent respectivement en cartes 2-connexes et en triangulations irréductibles de manière parallèle.



2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Mireille Bousquet-Mélou

International audience A self-avoiding walk on the square lattice is $\textit{prudent}$, if it never takes a step towards a vertex it has already visited. Préa was the first to address the enumeration of these walks, in 1997. For 4 natural classes of prudent walks, he wrote a system of recurrence relations, involving the length of the walks and some additional "catalytic'' parameters. The generating function of the first class is easily seen to be rational. The second class was proved to have an algebraic (quadratic) generating function by Duchi (FPSAC'05). Here, we solve exactly the third class, which turns out to be much more complex: its generating function is not algebraic, nor even $D$-finite. The fourth class ―- general prudent walks ―- still defeats us. However, we design an isotropic family of prudent walks on the triangular lattice, which we count exactly. Again, the generating function is proved to be non-$D$-finite. We also study the end-to-end distance of these walks and provide random generation procedures. Un chemin auto-évitant sur le réseau carré est $\textit{prudent}$, s'il ne fait jamais un pas en direction d'un point qu'il a déjà visité. Préa est le premier à avoir cherché à énumérer ces chemins, en 1997. Pour 4 classes naturelles de chemins prudents, il donne un système de relations de récurrence, impliquant la longueur des chemins et plusieurs paramètres "catalytiques'' supplémentaires. La première classe a une série génératrice simple, rationnelle. La deuxième a une série algébrique (quadratique) (Duchi, FPSAC'05). Nous comptons ici les chemins de la troisième classe, et observons un saut de complexité: la série obtenue n'est ni algébrique, ni même différentiellement finie. La quatrième classe, celle des chemins prudents généraux, résiste encore. Cependant, nous définissons un modèle isotrope de chemins prudents sur réseau triangulaire, que nous résolvons de nouveau, la série obtenue n'est pas différentiellement finie. Nous étudions aussi la vitesse d'éloignement de ces chemins, et proposons des algorithmes de génération aléatoire.



2015 ◽  
Vol Vol. 17 no. 1 (Combinatorics) ◽  
Author(s):  
Helmut Prodinger ◽  
Stephan Wagner

Combinatorics International audience We provide a rather general asymptotic scheme for combinatorial parameters that asymptotically follow a discrete double-exponential distribution. It is based on analysing generating functions Gh(z) whose dominant singularities converge to a certain value at an exponential rate. This behaviour is typically found by means of a bootstrapping approach. Our scheme is illustrated by a number of classical and new examples, such as the longest run in words or compositions, patterns in Dyck and Motzkin paths, or the maximum degree in planted plane trees.



2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Axel Bacher ◽  
Nicholas Beaton

International audience We define and enumerate a new class of self-avoiding walks on the square lattice, which we call <i>weakly prudent bridges</i>. Their definition is inspired by two previously-considered classes of self-avoiding walks, and can be viewed as a combination of those two models. We consider several methods for recursively generating these objects, each with its own advantages and disadvantages, and use these methods to solve the generating function, obtain very long series, and randomly generate walks of arbitrary size. We find that the growth constant of these walks is approximately 2.58, which is larger than that of any previously-solved class of self-avoiding walks.



10.37236/1305 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
Gilles Schaeffer

Abstract: We give a bijection between Eulerian planar maps with prescribed vertex degrees, and some plane trees that we call balanced Eulerian trees. To enumerate the latter, we introduce conjugation classes of planted plane trees. In particular, the result answers a question of Bender and Canfield and allows uniform random generation of Eulerian planar maps with restricted vertex degrees. Using a well known correspondence between 4-regular planar maps with n vertices and planar maps with n edges we obtain an algorithm to generate uniformly such maps with complexity O(n). Our bijection is also refined to give a combinatorial interpretation of a parameterization of Arquès of the generating function of planar maps with respect to vertices and faces.



Sign in / Sign up

Export Citation Format

Share Document