scholarly journals The Incidence Hopf Algebra of Graphs

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Brandon Humpert ◽  
Jeremy L. Martin

International audience The graph algebra is a commutative, cocommutative, graded, connected incidence Hopf algebra, whose basis elements correspond to finite simple graphs and whose Hopf product and coproduct admit simple combinatorial descriptions. We give a new formula for the antipode in the graph algebra in terms of acyclic orientations; our formula contains many fewer terms than Schmitt's more general formula for the antipode in an incidence Hopf algebra. Applications include several formulas (some old and some new) for evaluations of the Tutte polynomial. L'algèbre de graphes est une algèbre d'incidence de Hopf commutative, cocommutative, graduée, et connexe, dont les éléments de base correspondent à des graphes finis simples et dont le produit et coproduit de Hopf admettent une description combinatoire simple. Nous présentons une nouvelle formule de l'antipode dans l'algèbre de graphes utilisant les orientations acycliques; notre formule contient beaucoup moins de termes que la formule générale de Schmitt pour l'antipode dans une algèbre d'incidence de Hopf. Les applications incluent plusieurs formules (connues et inconnues) pour les évaluations du polynôme de Tutte.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Nantel Bergeron ◽  
Cesar Ceballos

International audience We introduce a Hopf algebra structure of subword complexes, including both finite and infinite types. We present an explicit cancellation free formula for the antipode using acyclic orientations of certain graphs, and show that this Hopf algebra induces a natural non-trivial sub-Hopf algebra on c-clusters in the theory of cluster algebras.



2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.



2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Adrian Tanasa ◽  
Gerard Duchamp ◽  
Loïc Foissy ◽  
Nguyen Hoang-Nghia ◽  
Dominique Manchon

Combinatorics International audience A non-commutative, planar, Hopf algebra of planar rooted trees was defined independently by one of the authors in Foissy (2002) and by R. Holtkamp in Holtkamp (2003). In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a quantum field theoretical (QFT) idea, namely the one of introducing discrete scales on each edge of the graph (which, within the QFT framework, corresponds to energy scales of the associated propagators). Finally, we analyze the associated quadri-coalgebra and codendrifrom structures.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Carolina Benedetti ◽  
Joshua Hallam ◽  
John Machacek

International audience We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their $f$-vectors. We also use characters to give a generalization of Stanley’s $(-1)$-color theorem. Nous considérons une algèbre de Hopf de complexes simpliciaux et fournissons une formule sans multiplicité pour son antipode. On obtient ensuite une famille d'algèbres de Hopf combinatoires en définissant une famille de caractères sur cette algèbre de Hopf. Les caractères de ces algèbres de Hopf donnent lieu à des fonctions symétriques qui encode de l’information sur les coloriages du complexe simplicial ainsi que son vecteur-$f$. Nousallons également utiliser des caractères pour donner une généralisation du théorème $(-1)$ de Stanley.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Rebecca Patrias ◽  
Pavlo Pylyavskyy

International audience We define a $K$ -theoretic analogue of Fomin’s dual graded graphs, which we call dual filtered graphs. The key formula in the definition is $DU - UD = D + I$. Our major examples are $K$ -theoretic analogues of Young’s lattice, the binary tree, and the graph determined by the Poirier-Reutenauer Hopf algebra. Most of our examples arise via two constructions, which we call the Pieri construction and the Möbius construction. The Pieri construction is closely related to the construction of dual graded graphs from a graded Hopf algebra, as described in Bergeron-Lam-Li, Nzeutchap, and Lam-Shimozono. The Möbius construction is more mysterious but also potentially more important, as it corresponds to natural insertion algorithms. Nous définissons un analogue $K$ -théorique aux graphes gradués en dualité de Fomin que nous appelons les graphes filtrés en dualité. La formule importante pour la définition est $DU - UD = D + I$. Nos principaux exemples sont un analogue $K$ -théorique aux graphe de Young, l’arbre binaire, et un graphe déterminé par l’algèbre de Hopf de Poirier-Reutenauer. La plupart de nos exemples surviennent de deux constructions que nous appelons la construction de Pieri et la construction de Möbius. La construction de Pieri est étroitement liée à la construction des graphes gradués en dualité d’une algèbre graduée de Hopf à la Bergeron-Lam-Li, Nzeutchap, et Lam-Shimozono. La construction de Möbius est plus mystérieuse, mais aussi peut-être plus importante car cette construction correspond aux algorithmes d’insertion naturelles.



2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Luca Moci

International audience We introduce a multiplicity Tutte polynomial $M(x,y)$, which generalizes the ordinary one and has applications to zonotopes and toric arrangements. We prove that $M(x,y)$ satisfies a deletion-restriction recurrence and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial $M(x,y)$, likewise the corresponding polynomials for a hyperplane arrangement are specializations of the ordinary Tutte polynomial. Furthermore, $M(1,y)$ is the Hilbert series of the related discrete Dahmen-Micchelli space, while $M(x,1)$ computes the volume and the number of integral points of the associated zonotope. On introduit un polynôme de Tutte avec multiplicité $M(x, y)$, qui généralise le polynôme de Tutte ordinaire et a des applications aux zonotopes et aux arrangements toriques. Nous prouvons que $M(x, y)$ satisfait une récurrence de "deletion-restriction'' et a des coefficients positifs. Le polynôme caractéristique et le polynôme de Poincaré d'un arrangement torique sont des spécialisations du polynôme associé $M(x, y)$, de même que les polynômes correspondants pour un arrangement d'hyperplans sont des spécialisations du polynôme de Tutte ordinaire. En outre, $M(1, y)$ est la série de Hilbert de l'espace discret de Dahmen-Micchelli associé, et $M(x, 1)$ calcule le volume et le nombre de points entiers du zonotope associé.



2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Cedric Chauve

International audience Constellations are colored planar maps that generalize different families of maps (planar maps, bipartite planar maps, bi-Eulerian planar maps, planar cacti, ...) and are strongly related to factorizations of permutations. They were recently studied by Bousquet-Mélou and Schaeffer who describe a correspondence between these maps and a family of trees, called Eulerian trees. In this paper, we derive from their result a relationship between planar constellations and another family of trees, called stellar trees. This correspondence generalizes a well known result for planar cacti, and shows that planar constellations are colored Lagrangian objects (that is objects that can be enumerated by the Good-Lagrange formula). We then deduce from this result a new formula for the number of planar constellations having a given face distribution, different from the formula one can derive from the results of Bousquet-Mélou and Schaeffer, along with systems of functional equations for the generating functions of bipartite and bi-Eulerian planar maps enumerated according to the partition of faces and vertices.



2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Gilles Schaeffer ◽  
Ekaterina Vassilieva

International audience In this paper we construct a bijection for partitioned 3-cacti that gives raise to a new formula for enumeration of factorizations of the long cycle into three permutations with given number of cycles. Dans cet article, nous construisons une bijection pour 3-cacti partitionnés faisant apparaître une nouvelle formule pour l’énumération des factorisations d’un long cycle en trois permutations ayant un nombre donné de cycles.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Petter Brändèn ◽  
Luca Moci

International audience We introduce an arithmetic version of the multivariate Tutte polynomial recently studied by Sokal, and a quasi-polynomial that interpolates between the two. We provide a generalized Fortuin-Kasteleyn representation for representable arithmetic matroids, with applications to arithmetic colorings and flows. We give a new proof of the positivity of the coefficients of the arithmetic Tutte polynomial in the more general framework of pseudo-arithmetic matroids. In the case of a representable arithmetic matroid, we provide a geometric interpretation of the coefficients of the arithmetic Tutte polynomial. Nous introduisons une version arithmétique du polynôme de Tutte multivariée récemment étudié par Sokal, et un quasi-polynôme qui interpole entre les deux. Nous proposons une représentation de Fortuin-Kasteleyn neutralise pour les matroïdes arithmétiques représentables, avec des applications aux colorations et flux arithmétiques. Nous donnons une nouvelle preuve de la positivité des coefficients du polynôme de Tutte arithmétique dans le cadre plus général des matroïdes pseudo-arithmétiques. Dans le cas d'un matroïde arithmétique représentable, nous proposons une interprétation géométrique des coefficients du polynôme de Tutte arithmétique.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Matjaž Konvalinka ◽  
Igor Pak

International audience Cayley polytopes were defined recently as convex hulls of Cayley compositions introduced by Cayley in 1857. In this paper we resolve Braun's conjecture, which expresses the volume of Cayley polytopes in terms of the number of connected graphs. We extend this result to a two-variable deformations, which we call Tutte polytopes. The volume of the latter is given via an evaluation of the Tutte polynomial of the complete graph. Our approach is based on an explicit triangulation of the Cayley and Tutte polytope. We prove that simplices in the triangulations correspond to labeled trees and forests. The heart of the proof is a direct bijection based on the neighbors-first search graph traversal algorithm. Les polytopes de Cayley ont été définis récemment comme des ensembles convexes de compositions de Cayley introduits par Cayley en 1857. Dans ce papier, nous résolvons la conjecture de Braun. Cette dernière exprime le volume du polytopes de Cayley en termes du nombre de graphes connexes. Nous étendons ce résultat à des déformations de polytopes de Cayley à deux variables, à savoir les polytopes de Tutte. Le volume de ces derniers est donnè par une évaluation du polynôme de Tutte du graphe complet. Notre approche est basée sur une triangulation explicite des polytopes de Cayley et Tutte. Nous démontrons que les simplexes de ces triangulations correspondent à des arbres marqués. La pierre angulaire de notre démonstration est une bijection directe basées sur l'algorithme de la recherche du premier voisin sur le graphe.



Sign in / Sign up

Export Citation Format

Share Document