scholarly journals Partitioned Cacti: a Bijective Approach to the Cycle Factorization Problem

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Gilles Schaeffer ◽  
Ekaterina Vassilieva

International audience In this paper we construct a bijection for partitioned 3-cacti that gives raise to a new formula for enumeration of factorizations of the long cycle into three permutations with given number of cycles. Dans cet article, nous construisons une bijection pour 3-cacti partitionnés faisant apparaître une nouvelle formule pour l’énumération des factorisations d’un long cycle en trois permutations ayant un nombre donné de cycles.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Joel Brewster Lewis ◽  
Alejandro H. Morales

International audience We consider GLn (Fq)-analogues of certain factorization problems in the symmetric group Sn: ratherthan counting factorizations of the long cycle(1,2, . . . , n) given the number of cycles of each factor, we countfactorizations of a regular elliptic element given the fixed space dimension of each factor. We show that, as in Sn, the generating function counting these factorizations has attractive coefficients after an appropriate change of basis.Our work generalizes several recent results on factorizations in GLn (Fq) and also uses a character-based approach.We end with an asymptotic application and some questions.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Alejandro Morales ◽  
Ekaterina Vassilieva

International audience We derive a new formula for the number of factorizations of a full cycle into an ordered product of two permutations of given cycle types. For the first time, a purely combinatorial argument involving a bijective description of bicolored maps of specified vertex degree distribution is used. All the previous results in the field rely either partially or totally on a character theoretic approach. The combinatorial proof relies on a new bijection extending the one in [G. Schaeffer and E. Vassilieva. $\textit{J. Comb. Theory Ser. A}$, 115(6):903―924, 2008] that focused only on the number of cycles. As a salient ingredient, we introduce the notion of thorn trees of given vertex degree distribution which are recursive planar objects allowing simple description of maps of arbitrary genus. \par Nous démontrons une nouvelle formule exprimant le nombre de factorisations d'un long cycle en produit de deux permutations ayant un type cyclique donné. Pour la première fois, nous utilisons un argument purement combinatoire basé sur une description bijective des cartes bicolores dont la distribution des degrés des sommets est donnée. Tous les résultats précédents dans le domaine se basent soit partiellement soit totalement sur la théorie des caractères de groupe. La preuve combinatoire se fonde sur une nouvelle bijection généralisant celle introduite dans [G. Schaeffer and E. Vassilieva. $\textit{J. Comb. Theory Ser. A}$, 115(6):903―924, 2008] ne s'intéressant qu'au nombre de cycles. L'ingrédient le plus saillant est l'introduction de la notion d'arbre épineux de structure cyclique donnée, des objets récursifs et planaires permettant une description simple des cartes de genus arbitraire.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Cedric Chauve

International audience Constellations are colored planar maps that generalize different families of maps (planar maps, bipartite planar maps, bi-Eulerian planar maps, planar cacti, ...) and are strongly related to factorizations of permutations. They were recently studied by Bousquet-Mélou and Schaeffer who describe a correspondence between these maps and a family of trees, called Eulerian trees. In this paper, we derive from their result a relationship between planar constellations and another family of trees, called stellar trees. This correspondence generalizes a well known result for planar cacti, and shows that planar constellations are colored Lagrangian objects (that is objects that can be enumerated by the Good-Lagrange formula). We then deduce from this result a new formula for the number of planar constellations having a given face distribution, different from the formula one can derive from the results of Bousquet-Mélou and Schaeffer, along with systems of functional equations for the generating functions of bipartite and bi-Eulerian planar maps enumerated according to the partition of faces and vertices.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Ekaterina A. Vassilieva

International audience We look at the number of permutations $\beta$ of $[N]$ with $m$ cycles such that $(1 2 \ldots N) \beta^{-1}$ is a long cycle. These numbers appear as coefficients of linear monomials in Kerov's and Stanley's character polynomials. D. Zagier, using algebraic methods, found an unexpected connection with Stirling numbers of size $N+1$. We present the first combinatorial proof of his result, introducing a new bijection between partitioned maps and thorn trees. Moreover, we obtain a finer result, which takes the type of the permutations into account. Nous étudions le nombre de permutations $\beta$ de $[N]$ avec $m$ cycles telles que $(1 2 \ldots N) \beta^{-1}$ a un seul cycle. Ces nombres apparaissent en tant que coefficients des monômes linéaires des polynômes de Kerov et de Stanley. À l'aide de méthodes algébriques, D. Zagier a trouvé une connexion inattendue avec les nombres de Stirling de taille $N+1$. Nous présentons ici la première preuve combinatoire de son résultat, en introduisant une nouvelle bijection entre des cartes partitionnées et des arbres épineux. De plus, nous obtenons un résultat plus fin, prenant en compte le type des permutations.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Robert Cori ◽  
Claire Mathieu

International audience A permutation $a_1a_2 \ldots a_n$ is $\textit{indecomposable}$ if there does not exist $p \lt n$ such that $a_1a_2 \ldots a_p$ is a permutation of $\{ 1,2, \ldots ,p\}$. We compute the asymptotic probability that a permutation of $\mathbb{S}_n$ with $m$ cycles is indecomposable as $n$ goes to infinity with $m/n$ fixed. The error term is $O(\frac{\log(n-m)}{ n-m})$. The asymptotic probability is monotone in $m/n$, and there is no threshold phenomenon: it degrades gracefully from $1$ to $0$. When $n=2m$, a slight majority ($51.1 \ldots$ percent) of the permutations are indecomposable. We also consider indecomposable fixed point free involutions which are in bijection with maps of arbitrary genus on orientable surfaces, for these involutions with $m$ left-to-right maxima we obtain a lower bound for the probability of being indecomposable. Une permutation $a_1a_2 \ldots a_n$ est $\textit{indécomposable}$, s’il n’existe pas de $p \lt n$ tel que $a_1a_2 \ldots a_p$ est une permutation de $\{ 1,2, \ldots ,p\}$. Nous calculons la probabilité pour qu’une permutation de $\mathbb{S}_n$ ayant $m$ cycles soit indécomposable et plus particulièrement son comportement asymptotique lorsque $n$ tend vers l’infini et que $m=n$ est fixé. Cette valeur décroît régulièrement de $1$ à $0$ lorsque $m=n$ croît, et il n’y a pas de phénomène de seuil. Lorsque $n=2m$, une faible majorité ($51.1 \ldots$ pour cent) des permutations sont indécomposables. Nous considérons aussi les involutions sans point fixe indécomposables qui sont en bijection avec les cartes de genre quelconque plongées dans une surface orientable, pour ces involutions ayant $m$ maxima partiels (ou records) nous obtenons une borne inférieure pour leur probabilité d’êtres indécomposables.


2009 ◽  
Vol Vol. 11 no. 2 (Graph and Algorithms) ◽  
Author(s):  
Janusz Adamus ◽  
Lech Adamus

Graphs and Algorithms International audience We conjecture Ore and Erdős type criteria for a balanced bipartite graph of order 2n to contain a long cycle C(2n-2k), where 0 <= k < n/2. For k = 0, these are the classical hamiltonicity criteria of Moon and Moser. The main two results of the paper assert that our conjectures hold for k = 1 as well.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Sara Billey ◽  
Matjaz Konvalinka ◽  
Frderick Matsen IV

International audience Tanglegrams are a class of graphs arising in computer science and in biological research on cospeciation and coevolution. They are formed by identifying the leaves of two rooted binary trees. The embedding of the trees in the plane is irrelevant for this application. We give an explicit formula to count the number of distinct binary rooted tanglegrams with n matched leaves, along with a simple asymptotic formula and an algorithm for choosing a tanglegram uniformly at random. The enumeration formula is then extended to count the number of tangled chains of binary trees of any length. This work gives a new formula for the number of binary trees with n leaves. Several open problems and conjectures are included along with pointers to several followup articles that have already appeared.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Ekaterina A. Vassilieva

International audience This paper is devoted to the computation of the number of ordered factorizations of a long cycle in the symmetric group where the number of factors is arbitrary and the cycle structure of the factors is given. Jackson (1988) derived the first closed form expression for the generating series of these numbers using the theory of the irreducible characters of the symmetric group. Thanks to a direct bijection we compute a similar formula and provide the first purely combinatorial evaluation of these generating series. Cet article est dédié au calcul du nombre de factorisations d’un long cycle du groupe symétrique pour lesquels le nombre de facteurs est arbitraire et la structure des cycles des facteurs est donnée. Jackson (1988) a dérivé la première expression compacte pour les séries génératrices de ces nombres en utilisant la théorie des caractères irréductibles du groupe symétrique. Grâce à une bijection directe nous démontrons une formule similaire et donnons ainsi la première évaluation purement combinatoire de ces séries génératrices.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Woong Kook ◽  
Kang-Ju Lee

International audience We give a new formula for the weighted high-dimensional tree-numbers of matroid complexes. This formula is derived from our result that the spectra of the weighted combinatorial Laplacians of matroid complexes consist of polynomials in the weights. In the formula, Crapo’s $\beta$-invariant appears as the key factor relating weighted combinatorial Laplacians and weighted tree-numbers for matroid complexes. Nous présentons une nouvelle formule pour les nombres d’arbres pondérés de grande dimension des matroïdes complexes. Cette formule est dérivée du résultat que le spectre des Laplaciens combinatoires pondérés des matrides complexes sont des polynômes à plusieurs variables. Dans la formule, le $\beta$;-invariant de Crapo apparaît comme étant le facteur clé reliant les Laplaciens combinatoires pondérés et les nombres d’arbres pondérés des matroïdes complexes.


Sign in / Sign up

Export Citation Format

Share Document