scholarly journals Development of Short-term Flood Forecast Using ARIMA

Author(s):  
Wei Ming Wong ◽  
Mohamad Yusry Lee ◽  
Amierul Syazrul Azman ◽  
Lew Ai Fen Rose

The aim of this study is to use the Box-Jenkins method to build a flood forecast model by analysing real-time flood parameters for Pengkalan Rama, Melaka river, hereafter known as Sungai Melaka. The time series was tested for stationarity using the Augmented Dickey-Fuller (ADF) and differencing method to render a non-stationary time series stationary from 1 July 2020 at 12:00am to 30th July 2020. A utocorrelation (ACF) and partial autocorrelation (PACF) functions was measured and observed using visual observation to identify the suitable model for water level time series. The parameter Akaike Information Information Criterion (AIC) and the Bayesian Information Criterion (BIC) were used to find the best ARIMA model (BIC). ARIMA (2, 1, 3) was the best ARIMA model for the Pengkalan Rama, with an AIC of 5653.7004 and a BIC of 5695.209. The ARIMA (2, 1, 3) model was used to produce a lead forecast of up to 7 hours for the time series. The model's accuracy was tested by comparing the original and forecast sequences by using Pearson r and R squared. The ARIMA model appears to be adequate for Sungai Melaka, according to the findings of this study. Finally, the ARIMA model provides an appropriate short-term water level forecast with a lead forecast of up to 7 hours. As a result, the ARIMA model is undeniably ideal for river flooding.

Author(s):  
C. Li ◽  
H. Peng ◽  
L. K. Huang ◽  
L. L. Liu ◽  
S. F. Xie

Abstract. According to the empirical orthogonal function (EOF), the non-stationary time series data are decomposed into time function and space function, so this mathematical method can simplify the non-stationary time series and eliminate redundant information, thus it performs well in non-stationary time series analysis. The ionospheric Vertical Total Electron Content (VTEC) is a non-stationary time series, which has non-stationary and seasonal variation and the activity of VTEC is more active in low latitudes. Guangxi is located in the middle and low latitudes of the Northern Hemisphere with abundant sunshine in summer and autumn. The energy released by solar radiation makes the ionospheric activity in this region more complex than that in the high latitudes. However, no expert or scholar has used EOF analysis method to conduct a comprehensive study of the low latitudes. The International GNSS Service (IGS) provided by high precision Global Ionospheric Maps (GIM) center in Guangxi are used in the modeling data, the GIM data of the first 10 days of different seasons are decomposed by EOF, and then the time function is predicted by ARIMA model. VTEC values for the next five days are obtained through reconstruction, and relative accuracy and standard deviation are used as accuracy evaluation criteria. The results of EOF-ARIMA model are compared with those of ARIMA model, and the prediction accuracy of EOF-ARIMA model at the equatorial anomaly is analyzed in order to explore the reliability of the model in the more complex region of ionospheric activity. The results show that the average relative precision of EOF-ARIMA model is 84.0, the average standard deviation is 7.45TECu, the average relative precision of ARIMA model is 81.5, the average standard deviation is 8.29TECu, and the precision of EOF-ARIMA model is higher than that of ARIMA model.; There is no significant seasonal difference in the prediction accuracy of EOF-ARIMA model, and the prediction accuracy of ARIMA model in autumn is lower than that of other seasons, which indicates that the prediction results of EOF-ARIMA model are more reliable; The prediction accuracy of the EOF-ARIMA model at the equatorial anomaly is not affected, and it is consistent with the accuracy of the high latitude area in Guangxi. It is shown that the EOF-ARIMA model has high accuracy and stability in the short-term ionospheric prediction in Guangxi at low latitudes of China, and provides a new and reliable method for ionospheric prediction at low latitudes.


2002 ◽  
Vol 14 (1) ◽  
pp. 19-24
Author(s):  
XUE Lianqing ◽  
◽  
CUI Guangbai ◽  
CHEN Kaiqi

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3299
Author(s):  
Ashish Shrestha ◽  
Bishal Ghimire ◽  
Francisco Gonzalez-Longatt

Withthe massive penetration of electronic power converter (EPC)-based technologies, numerous issues are being noticed in the modern power system that may directly affect system dynamics and operational security. The estimation of system performance parameters is especially important for transmission system operators (TSOs) in order to operate a power system securely. This paper presents a Bayesian model to forecast short-term kinetic energy time series data for a power system, which can thus help TSOs to operate a respective power system securely. A Markov chain Monte Carlo (MCMC) method used as a No-U-Turn sampler and Stan’s limited-memory Broyden–Fletcher–Goldfarb–Shanno (LM-BFGS) algorithm is used as the optimization method here. The concept of decomposable time series modeling is adopted to analyze the seasonal characteristics of datasets, and numerous performance measurement matrices are used for model validation. Besides, an autoregressive integrated moving average (ARIMA) model is used to compare the results of the presented model. At last, the optimal size of the training dataset is identified, which is required to forecast the 30-min values of the kinetic energy with a low error. In this study, one-year univariate data (1-min resolution) for the integrated Nordic power system (INPS) are used to forecast the kinetic energy for sequences of 30 min (i.e., short-term sequences). Performance evaluation metrics such as the root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean absolute scaled error (MASE) of the proposed model are calculated here to be 4.67, 3.865, 0.048, and 8.15, respectively. In addition, the performance matrices can be improved by up to 3.28, 2.67, 0.034, and 5.62, respectively, by increasing MCMC sampling. Similarly, 180.5 h of historic data is sufficient to forecast short-term results for the case study here with an accuracy of 1.54504 for the RMSE.


2005 ◽  
Vol 56 (8) ◽  
pp. 1137 ◽  
Author(s):  
V. F. Matveev ◽  
L. K. Matveeva

In Lake Hume, a reservoir located in an active agricultural zone of the Murray River catchment, Australia, time series for the abundances of phytoplankton and zooplankton taxa, monitored from 1991 through to 1996, were stationary (without trends), and plankton taxonomic composition did not change. This indicated ecosystem resilience to strong fluctuations in reservoir water level, and to other potential agricultural impacts, for example eutrophication and pollution. Although biological stressors such as introduced fish and invertebrate predators are known to affect planktonic communities and reduce biodiversity in lakes, high densities of planktivorous stages of alien European perch (Perca fluviatilis) and the presence of carp (Cyprinus carpio) did not translate into non-stationary time series or declining trends for plankton in Lake Hume. However, the seasonal successions observed in the reservoir in different years did not conform well to the Plankton Ecology Group (PEG) model. Significant deviations of the Lake Hume successional pattern from the PEG model included maxima for phytoplankton abundance being in winter and the presence of a clear water phase without large zooplankton grazers. The instability of the water level in Lake Hume probably causes the dynamics of most planktonic populations to be less predictable, but did not initiate the declining trends that have been observed in some other Australian reservoirs. Both the PEG model and the present study suggest that hydrology is one of the major drivers of seasonal succession.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shaobo Lu

Based on the BP neural network and the ARIMA model, this paper predicts the nonlinear residual of GDP and adds the predicted values of the two models to obtain the final predicted value of the model. First, the focus is on the ARMA model in the univariate time series. However, in real life, forecasts are often affected by many factors, so the following introduces the ARIMAX model in the multivariate time series. In the prediction process, the network structure and various parameters of the neural network are not given in a systematic way, so the operation of the neural network is affected by many factors. Each forecasting method has its scope of application and also has its own weaknesses caused by the characteristics of its own model. Secondly, this paper proposes an effective combination method according to the GDP characteristics and builds an improved algorithm BP neural network price prediction model, the research on the combination of GDP prediction model is currently mostly focused on the weighted form, and this article proposes another combination, namely, error correction. According to the price characteristics, we determine the appropriate number of hidden layer nodes and build a BP neural network price prediction model based on the improved algorithm. Validation of examples shows that the error-corrected GDP forecast model is also better than the weighted GDP forecast model, which shows that error correction is also a better combination of forecasting methods. The forecast results of BP neural network have lower errors and monthly prices. The relative error of prediction is about 2.5%. Through comparison with the prediction results of the ARIMA model, in the daily price prediction, the relative error of the BP neural network prediction is 1.5%, which is lower than the relative error of the ARIMA model of 2%.


1970 ◽  
Vol 8 (1) ◽  
pp. 103-112 ◽  
Author(s):  
NMF Rahman

The study was undertaken to examine the best fitted ARIMA model that could be used to make efficient forecast boro rice production in Bangladesh from 2008-09 to 2012-13. It appeared from the study that local, modern and total boro time series are 1st order homogenous stationary. It is found from the study that the ARIMA (0,1,0) ARIMA (0,1,3) and ARIMA (0,1,2) are the best for local, modern and total boro rice production respectively. It is observed from the analysis that short term forecasts are more efficient for ARIMA models. The production uncertainty of boro rice can be minimizing if production can be forecasted well and necessary steps can be taken against losses. The government and producer as well use ARIMA methods to forecast future production more accurately in the short run. Keywords: Production; ARIMA model; Forecasting. DOI: 10.3329/jbau.v8i1.6406J. Bangladesh Agril. Univ. 8(1): 103-112, 2010


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yihuai Huang ◽  
Chao Xu ◽  
Mengzhong Ji ◽  
Wei Xiang ◽  
Da He

Abstract Background Accurate forecasting of medical service demand is beneficial for the reasonable healthcare resource planning and allocation. The daily outpatient volume is characterized by randomness, periodicity and trend, and the time series methods, like ARIMA are often used for short-term outpatient visits forecasting. Therefore, to further enlarge the prediction horizon and improve the prediction accuracy, a hybrid prediction model integrating ARIMA and self-adaptive filtering method is proposed. Methods The ARIMA model is first used to identify the features like cyclicity and trend of the time series data and to estimate the model parameters. The parameters are then adjusted by the steepest descent algorithm in the adaptive filtering method to reduce the prediction error. The hybrid model is validated and compared with traditional ARIMA by several test sets from the Time Series Data Library (TSDL), a weekly emergency department (ED) visit case from literature study, and the real cases of prenatal examinations and B-ultrasounds in a maternal and child health care center (MCHCC) in Ningbo. Results For TSDL cases the prediction accuracy of the hybrid prediction is improved by 80–99% compared with the ARIMA model. For the weekly ED visit case, the forecasting results of the hybrid model are better than those of both traditional ARIMA and ANN model, and similar to the ANN combined data decomposition model mentioned in the literature. For the actual data of MCHCC in Ningbo, the MAPE predicted by the ARIMA model in the two departments was 18.53 and 27.69%, respectively, and the hybrid models were 2.79 and 1.25%, respectively. Conclusions The hybrid prediction model outperforms the traditional ARIMA model in both accurate predicting result with smaller average relative error and the applicability for short-term and medium-term prediction.


Energetika ◽  
2016 ◽  
Vol 62 (1-2) ◽  
Author(s):  
Ernesta Grigonytė ◽  
Eglė Butkevičiūtė

The massive integration of wind power into the power system increasingly calls for better short-term wind speed forecasting which helps transmission system operators to balance the power systems with less reserve capacities. The  time series analysis methods are often used to analyze the  wind speed variability. The  time series are defined as a sequence of observations ordered in time. Statistical methods described in this paper are based on the prediction of future wind speed data depending on the historical observations. This allows us to find a sufficiently good model for the wind speed prediction. The paper addresses a short-term wind speed forecasting ARIMA (Autoregressive Integrated Moving Average) model. This method was applied for a number of different prediction problems, including the short term wind speed forecasts. It is seen as an early time series methodology with well-known limitations in wind speed forecasting, mainly because of insufficient accuracies of the hourly forecasts for the second half of the day-ahead forecasting period. The authors attempt to find the maximum effectiveness of the model aiming to find: (1) how the identification of the optimal model structure improves the forecasting results and (2) what accuracy increase can be gained by reidentification of the structure for a new wind weather season. Both historical and synthetic wind speed data representing the sample locality in the Baltic region were used to run the model. The model structure is defined by rows p, d, q and length of retrospective data period. The structure parameters p (Autoregressive component, AR) and q (Moving Average component, MA) were determined by the Partial Auto-Correlation Function (PACF) and Auto-Correlation Function (ACF), respectively. The model’s forecasting accuracy is based on the root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE). The results allowed to establish the optimal model structure and the length of the input/retrospective period. The  quantitative study revealed that identification of the  optimal model structure gives significant accuracy improvement against casual structures for 6–8 h forecast lead time, but a season-specific structure is not appropriate for the entire year period. Based on the conducted calculations, we propose to couple the ARIMA model with any more effective method into a hybrid model.


2017 ◽  
Vol 14 (4) ◽  
pp. 524 ◽  
Author(s):  
Djawoto Djawoto

Auto Regression Integrated Moving Average (ARIMA) or the combination model of Auto Regression with moving average, is a linier model which is able to represent the stationary time series or non stationary time series. The purpose of this research is to forecast the inflation rate in November 2010 with the Consumer Price Index (CPI) by using ARIMA. The inflation indicator is very important to anticipate in making the Government’s policy and decision as well as for the citizen is for the information to determine what to do in related with savings and investment. By looking at the existing criteria, it is determined that the best model is ARIMA (1,1,0) or AR (1). Model ARIMA (1,1,0), the coefficient value AR (1) is significant,which has the most minimum value of Akaike Info Criterion (AIC) and Schwars Criterion (SC) compare toARIMA (0,1,1) or MA (1) and ARIMA (1,1,1) or AR (1) MA (1). In summarize, the ARIMA model used to forecast the valueof IHK is ARIMA (1,1,0).


Sign in / Sign up

Export Citation Format

Share Document