scholarly journals PERAMALAN LAJU INFLASI DENGAN METODE AUTO REGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

2017 ◽  
Vol 14 (4) ◽  
pp. 524 ◽  
Author(s):  
Djawoto Djawoto

Auto Regression Integrated Moving Average (ARIMA) or the combination model of Auto Regression with moving average, is a linier model which is able to represent the stationary time series or non stationary time series. The purpose of this research is to forecast the inflation rate in November 2010 with the Consumer Price Index (CPI) by using ARIMA. The inflation indicator is very important to anticipate in making the Government’s policy and decision as well as for the citizen is for the information to determine what to do in related with savings and investment. By looking at the existing criteria, it is determined that the best model is ARIMA (1,1,0) or AR (1). Model ARIMA (1,1,0), the coefficient value AR (1) is significant,which has the most minimum value of Akaike Info Criterion (AIC) and Schwars Criterion (SC) compare toARIMA (0,1,1) or MA (1) and ARIMA (1,1,1) or AR (1) MA (1). In summarize, the ARIMA model used to forecast the valueof IHK is ARIMA (1,1,0).

2018 ◽  
Vol 14 (4) ◽  
pp. 524-538
Author(s):  
Djawoto Djawoto

Auto Regression Integrated Moving Average (ARIMA) or the combination model of Auto Regression with moving average, is a linier model which is able to represent the stationary time series or non stationary time series. The purpose of this research is to forecast the inflation rate in November 2010 with the Consumer Price Index (CPI) by using ARIMA. The inflation indicator is very important to anticipate in making the Government’s policy and decision as well as for the citizen is for the information to determine what to do in related with savings and investment. By looking at the existing criteria, it is determined that the best model is ARIMA (1,1,0) or AR (1). Model ARIMA (1,1,0), the coefficient value AR (1) is significant,which has the most minimum value of Akaike Info Criterion (AIC) and Schwars Criterion (SC) compare toARIMA (0,1,1) or MA (1) and ARIMA (1,1,1) or AR (1) MA (1). In summarize, the ARIMA model used to forecast the valueof IHK is ARIMA (1,1,0).


2019 ◽  
Vol 16 (12) ◽  
pp. 4930-4936
Author(s):  
Nur Afiqah Mohamed Hafiz ◽  
Norizarina Ishak ◽  
Ahmad Fadly Nurullah Rasedee

Wilkie investment model is a stochastic investment model that was built by Wilkie in 1984 and was updated in 1995. The model building objective is forecasting. Box-Jenkins method was the basic structure of Wilkie model. It involves various type of forecasting model. Some model handle stationary time series such as autoregressive moving average (ARMA) model while some of them handle non-stationary time series such as autoregressive integrated moving average (ARIMA) model. There are four sub-models in the Wilkie model which is retail price index model, share dividend yield model, share dividend index model and Consols yield model. In this paper, the Wilkie share price model [4] was apply to Malaysia data in analysing and forecasting FTSE Bursa Malaysia KLCI share price index for 36 month ahead from November 2015 to October 2018. Monthly historical data from January 1996 to October 2015 are use as the base. We use ARIMA model to forecast the share price index in Malaysia. ARIMA(0,1,2) model was chosen as the best fit forecasting model. Through forecasting, we are able to evaluate the performance of the share price index in Malaysia.


2021 ◽  
pp. 1-13
Author(s):  
Muhammad Rafi ◽  
Mohammad Taha Wahab ◽  
Muhammad Bilal Khan ◽  
Hani Raza

Automatic Teller Machine (ATM) are still largely used to dispense cash to the customers. ATM cash replenishment is a process of refilling ATM machine with a specific amount of cash. Due to vacillating users demands and seasonal patterns, it is a very challenging problem for the financial institutions to keep the optimal amount of cash for each ATM. In this paper, we present a time series model based on Auto Regressive Integrated Moving Average (ARIMA) technique called Time Series ARIMA Model for ATM (TASM4ATM). This study used ATM back-end refilling historical data from 6 different financial organizations in Pakistan. There are 2040 distinct ATMs and 18 month of replenishment data from these ATMs are used to train the proposed model. The model is compared with the state-of- the-art models like Recurrent Neural Network (RNN) and Amazon’s DeepAR model. Two approaches are used for forecasting (i) Single ATM and (ii) clusters of ATMs (In which ATMs are clustered with similar cash-demands). The Mean Absolute Percentage Error (MAPE) and Symmetric Mean Absolute Percentage Error (SMAPE) are used to evaluate the models. The suggested model produces far better forecasting as compared to the models in comparison and produced an average of 7.86/7.99 values for MAPE/SMAPE errors on individual ATMs and average of 6.57/6.64 values for MAPE/SMAPE errors on clusters of ATMs.


Author(s):  
Sudip Singh

India, with a population of over 1.38 billion, is facing high number of daily COVID-19 confirmed cases. In this chapter, the authors have applied ARIMA model (auto-regressive integrated moving average) to predict daily confirmed COVID-19 cases in India. Detailed univariate time series analysis was conducted on daily confirmed data from 19.03.2020 to 28.07.2020, and the predictions from the model were satisfactory with root mean square error (RSME) of 7,103. Data for this study was obtained from various reliable sources, including the Ministry of Health and Family Welfare (MoHFW) and http://covid19india.org/. The model identified was ARIMA(1,1,1) based on time series decomposition, autocorrelation function (ACF), and partial autocorrelation function (PACF).


Author(s):  
C. Li ◽  
H. Peng ◽  
L. K. Huang ◽  
L. L. Liu ◽  
S. F. Xie

Abstract. According to the empirical orthogonal function (EOF), the non-stationary time series data are decomposed into time function and space function, so this mathematical method can simplify the non-stationary time series and eliminate redundant information, thus it performs well in non-stationary time series analysis. The ionospheric Vertical Total Electron Content (VTEC) is a non-stationary time series, which has non-stationary and seasonal variation and the activity of VTEC is more active in low latitudes. Guangxi is located in the middle and low latitudes of the Northern Hemisphere with abundant sunshine in summer and autumn. The energy released by solar radiation makes the ionospheric activity in this region more complex than that in the high latitudes. However, no expert or scholar has used EOF analysis method to conduct a comprehensive study of the low latitudes. The International GNSS Service (IGS) provided by high precision Global Ionospheric Maps (GIM) center in Guangxi are used in the modeling data, the GIM data of the first 10 days of different seasons are decomposed by EOF, and then the time function is predicted by ARIMA model. VTEC values for the next five days are obtained through reconstruction, and relative accuracy and standard deviation are used as accuracy evaluation criteria. The results of EOF-ARIMA model are compared with those of ARIMA model, and the prediction accuracy of EOF-ARIMA model at the equatorial anomaly is analyzed in order to explore the reliability of the model in the more complex region of ionospheric activity. The results show that the average relative precision of EOF-ARIMA model is 84.0, the average standard deviation is 7.45TECu, the average relative precision of ARIMA model is 81.5, the average standard deviation is 8.29TECu, and the precision of EOF-ARIMA model is higher than that of ARIMA model.; There is no significant seasonal difference in the prediction accuracy of EOF-ARIMA model, and the prediction accuracy of ARIMA model in autumn is lower than that of other seasons, which indicates that the prediction results of EOF-ARIMA model are more reliable; The prediction accuracy of the EOF-ARIMA model at the equatorial anomaly is not affected, and it is consistent with the accuracy of the high latitude area in Guangxi. It is shown that the EOF-ARIMA model has high accuracy and stability in the short-term ionospheric prediction in Guangxi at low latitudes of China, and provides a new and reliable method for ionospheric prediction at low latitudes.


Author(s):  
Arunkumar P. M. ◽  
Lakshmana Kumar Ramasamy ◽  
Amala Jayanthi M.

A novel corona virus, COVID-19 is spreading across different countries in an alarming proportion and it has become a major threat to the existence of human community. With more than eight lakh death count within a very short span of seven months, this deadly virus has affected more than 24 million people across 213 countries and territories around the world. Time-series analysis, modeling and forecasting is an important research area that explores the hidden insights from larger set of time-bound data for arriving better decisions. In this work, data analysis on COVID-19 dataset is performed by comparing the top six populated countries in the world. The data used for the evaluation is taken for a time period from 22nd January 2020 to 23rd August 2020.A novel time-series forecasting approach based on Auto-regressive integrated moving average (ARIMA) model is also proposed. The results will help the researchers from medical and scientific community to gauge the trend of the disease spread and improvise containment strategies accordingly.


2021 ◽  
Vol 12 (3) ◽  
pp. 70
Author(s):  
Abdullah Ghazo

Gross Domestic Product (GDP) and consumer price index (CPI) are significant indicators to describe and evaluate economic activity and levels of development. They are also often used by decision makers so as to plan economic policy. This paper aims at modeling and predicting GDP and CPI in Jordan. In order to achieve this goal, the study applied the Box- Jenkins (JB) methodology for the period 1976-2019. Based on the results, ARIMA (3,1,1) found to be the best model for the GDP. In addition, ARIMA (1,1,0) was the best model for forecasting the CPI. The results were supported with the findings of the stationarity and identification rules test of time series under using AIC and SIC criterion. The forecasted values of the GDP and the CPI for the next three years (2020-2022) were (29342.12, 32095.10, 35106.36 million JD) and (128.31, 133.28, 139.28) respectively. Compared with 2019, the GDP is forecasted to decrease in 2020, while the CPI is forecasted to increase in 2020. This implies that the Jordanian economy is tending toward stagflation. After 2020, both GDP and CPI increased, which indicates that Jordanian economy is tending toward cost-push inflation.


Author(s):  
Qianru Li ◽  
Christophe Tricaud ◽  
Rongtao Sun ◽  
YangQuan Chen

In this paper, we have examined 4 models for Great Salt Lake level forecasting: ARMA (Auto-Regression and Moving Average), ARFIMA (Auto-Regressive Fractional Integral and Moving Average), GARCH (Generalized Auto-Regressive Conditional Heteroskedasticity) and FIGARCH (Fractional Integral Generalized Auto-Regressive Conditional Heteroskedasticity). Through our empirical data analysis where we divide the time series in two parts (first 2000 measurement points in Part-1 and the rest is Part-2), we found that for Part-2 data, FIGARCH offers best performance indicating that conditional heteroscedasticity should be included in time series with high volatility.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 240 ◽  
Author(s):  
Mohammed Alsharif ◽  
Mohammad Younes ◽  
Jeong Kim

Forecasting solar radiation has recently become the focus of numerous researchers due to the growing interest in green energy. This study aims to develop a seasonal auto-regressive integrated moving average (SARIMA) model to predict the daily and monthly solar radiation in Seoul, South Korea based on the hourly solar radiation data obtained from the Korean Meteorological Administration over 37 years (1981–2017). The goodness of fit of the model was tested against standardized residuals, the autocorrelation function, and the partial autocorrelation function for residuals. Then, model performance was compared with Monte Carlo simulations by using root mean square errors and coefficient of determination (R2) for evaluation. In addition, forecasting was conducted by using the best models with historical data on average monthly and daily solar radiation. The contributions of this study can be summarized as follows: (i) a time series SARIMA model is implemented to forecast the daily and monthly solar radiation of Seoul, South Korea in consideration of the accuracy, suitability, adequacy, and timeliness of the collected data; (ii) the reliability, accuracy, suitability, and performance of the model are investigated relative to those of established tests, standardized residual, autocorrelation function (ACF), and partial autocorrelation function (PACF), and the results are compared with those forecasted by the Monte Carlo method; and (iii) the trend of monthly solar radiation in Seoul for the coming years is analyzed and compared on the basis of the solar radiation data obtained from KMS over 37 years. The results indicate that (1,1,2) the ARIMA model can be used to represent daily solar radiation, while the seasonal ARIMA (4,1,1) of 12 lags for both auto-regressive and moving average parts can be used to represent monthly solar radiation. According to the findings, the expected average monthly solar radiation ranges from 176 to 377 Wh/m2.


Sign in / Sign up

Export Citation Format

Share Document