scholarly journals Compression and Visualization Interactive of 3D Mesh

Author(s):  
Zeineb Abderrahim ◽  
Mohamed Salim Bouhlel

The combination of compression and visualization is mentioned as perspective, very few articles treat with this problem. Indeed, in this paper, we proposed a new approach to multiresolution visualization based on a combination of segmentation and multiresolution mesh compression. For this, we proposed a new segmentation method that benefits the organization of faces of the mesh followed by a progressive local compression of regions of mesh to ensure the refinement local of the three-dimensional object. Thus, the quantization precision is adapted to each vertex during the encoding /decoding process to optimize the rate-distortion compromise. The optimization of the treated mesh geometry improves the approximation quality and the compression ratio at each level of resolution. The experimental results show that the proposed algorithm gives competitive results compared to the previous works dealing with the rate-distortion compromise and very satisfactory visual results.

2014 ◽  
Vol 1 (2) ◽  
pp. 96-102 ◽  
Author(s):  
Ikuru Otomo ◽  
Masahiko Onosato ◽  
Fumiki Tanaka

Abstract In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahe-dralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 99
Author(s):  
Yang Zheng ◽  
Jieyu Zhao ◽  
Yu Chen ◽  
Chen Tang ◽  
Shushi Yu

With the widespread success of deep learning in the two-dimensional field, how to apply deep learning methods from two-dimensional to three-dimensional field has become a current research hotspot. Among them, the polygon mesh structure in the three-dimensional representation as a complex data structure provides an effective shape approximate representation for the three-dimensional object. Although the traditional method can extract the characteristics of the three-dimensional object through the graphical method, it cannot be applied to more complex objects. However, due to the complexity and irregularity of the mesh data, it is difficult to directly apply convolutional neural networks to 3D mesh data processing. Considering this problem, we propose a deep learning method based on a capsule network to effectively classify mesh data. We first design a polynomial convolution template. Through a sliding operation similar to a two-dimensional image convolution window, we directly sample on the grid surface, and use the window sampling surface as the minimum unit of calculation. Because a high-order polynomial can effectively represent a surface, we fit the approximate shape of the surface through the polynomial, use the polynomial parameter as the shape feature of the surface, and add the center point coordinates and normal vector of the surface as the pose feature of the surface. The feature is used as the feature vector of the surface. At the same time, to solve the problem of the introduction of a large number of pooling layers in traditional convolutional neural networks, the capsule network is introduced. For the problem of nonuniform size of the input grid model, the capsule network attitude parameter learning method is improved by sharing the weight of the attitude matrix. The amount of model parameters is reduced, and the training efficiency of the 3D mesh model is further improved. The experiment is compared with the traditional method and the latest two methods on the SHREC15 data set. Compared with the MeshNet and MeshCNN, the average recognition accuracy in the original test set is improved by 3.4% and 2.1%, and the average after fusion of features the accuracy reaches 93.8%. At the same time, under the premise of short training time, this method can also achieve considerable recognition results through experimental verification. The three-dimensional mesh classification method proposed in this paper combines the advantages of graphics and deep learning methods, and effectively improves the classification effect of 3D mesh model.


Author(s):  
Elrnar Zeitler

Considering any finite three-dimensional object, a “projection” is here defined as a two-dimensional representation of the object's mass per unit area on a plane normal to a given projection axis, here taken as they-axis. Since the object can be seen as being built from parallel, thin slices, the relation between object structure and its projection can be reduced by one dimension. It is assumed that an electron microscope equipped with a tilting stage records the projectionWhere the object has a spatial density distribution p(r,ϕ) within a limiting radius taken to be unity, and the stage is tilted by an angle 9 with respect to the x-axis of the recording plane.


2018 ◽  
Vol 10 (2) ◽  
pp. 84-94 ◽  
Author(s):  
M. Pershina ◽  
V.S. Bouksim ◽  
K. Arhid ◽  
F.R. Zakani ◽  
M. Aboulfatah ◽  
...  

2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Zhai ◽  
Hui Chen ◽  
Zhihua Shan

AbstractElectrochemical modification of animal skin is a new material preparation method and new direction of research exploration. In this study, under the action of the electric field using NaCl as the supporting electrolyte, the effect of electrolysis on Glycyl-glycine(GlyGl), gelatin(Gel) and Three-dimensional rawhide collagen(3DC) were determined. The amino group of GlyGl is quickly eliminated within the anode region by electrolysis isolated by an anion exchange membrane. Using the same method, it was found that the molecular weight of Gel and the isoelectric point of the Gel decreased, and the viscosity and transparency of the Gel solution obviously changed. The electrolytic dissolution and structural changes of 3DC were further investigated. The results of TOC and TN showed that the organic matter in 3DC was dissolved by electrolysis, and the tissue cavitation was obvious. A new approach for the preparation of collagen-based multi-pore biomaterials by electrochemical method was explored.


Sign in / Sign up

Export Citation Format

Share Document