scholarly journals Energy Efficiency of DH System with Wood Chips Boiler Houses and Flue Gas Condensing Unit

2021 ◽  
Vol 8 ◽  
pp. 91-94
Author(s):  
Ăirts Vīgants ◽  
Gundars Galindoms ◽  
Ivars Veidenbergs ◽  
Dagnija Blumberga

This study proposes a method for the evaluation of the efficiency of a heat supply system based on a correlation analysis of the data of the system's operations. The data from the system's operations have been analysed and a correlation equation has been applied to obtain the results of the analysis, which are then used for further calculations. The data can be divided into two groups: data characterising the condenser operations in the boiler house, and data characterising heating networks.

Author(s):  
Tetiana Zheliuk

Introduction. One of the main directions of ensuring the sustainable development of the national economy and its regions is the reform of the energy sector, which can take place through the modernization or innovation of its components. An important component of these reforms is to provide the population with the environmentally friendly and socially safe thermal energy. At the present stage of management, the heat supply is the most costly branch of public utilities, which is supplemented by the problems of the inefficient fuel balance structure; worn-out infrastructure and low energy efficiency. This highlights the need to study the management of modernization of the heat supply system in the region in view of the declared vectors of the long-term development. Object of research is the process of managing the modernization of the heat supply system in the region. Subject of the research is a set of scientific approaches and practical mechanisms of modernization of the heat supply system of the region in the context of ensuring its sustainable development. Objective. The conceptual foundations of modernization of the heat supply system of the region in the context of its sustainable development through the introduction of the innovative technologies both in the management process and in the energy sector itself is substantiated in the paper. Methods. The following general scientific methods were used during the research process: system, structural analysis, grouping, when studying the structural elements and isolation of problems of development of the heat supply system of the region; historical analysis, when considering the scientific principles and institutional mechanism of modernization of the region’s heat supply system; comparative analysis in assessing the possibilities of the green transition of the heat supply system of the region and also when considering the features of the use of grant resources in the modernization of the heat supply system of the region; economic analysis in assessing the current state of the district heating system, etc. results. The essential determinants of the heat supply system of the region are analyzed, the objective need, organizational and economic mechanisms for managing the modernization of the heat supply, taking into account the need for the balanced development of the energy sector of the region are verified. The scientific novelty of the obtained results lies in the substantiation of the conceptual approaches to the management of modernization of the heat supply system of the region by innovating the forms and methods of managerial influence on the heat supply system of the region. The conclusion is made about the following effective approaches in managing the modernization of the district heating system: planning of the sustainable development of the energy sector, development of programs for modernization of the district heating, implementation of the infrastructure and soft projects, implementation of the international projects, motivation of households and entrepreneurship in the heat sector, participation in the grant requests, in state crediting programs, realization of the business projects in the field of production of environmentally friendly fuel; conducting an information campaign among the population and other key market players to raise the awareness of the energy efficiency financing mechanisms. The practical significance of the obtained results is that the developed recommendations will be used to improve the organizational and economic mechanism of management of the district heating system modernization and ensure its sustainable development.


2021 ◽  
pp. 39-51
Author(s):  
M. Prokopov ◽  
◽  
S. Sharapov ◽  
Yu. Merzlyakov ◽  
D. Gusev ◽  
...  

The expediency of the implementation of the principle of steam thermal compression to improve the energy efficiency of sources of electricity and heat supply of small heat power engineering is substantiated. The results of thermodynamic analysis and numerical optimization of the parameters of the compressor steam-turbine cycle of a small cogeneration power plant are presented. A jet step-down thermotransformer has been tested - as an alternative to traditional boiler heating. On the basis of the conducted thermodynamic analysis, a new combined cycle of a step-down thermotransformer has been developed, which ensures efficient conversion of the supplied energy (mainly in the form of fuel heat) into the heat carrier flow of the heat supply system with the required temperature level 50 ... 90 °C). The fundamental difference between the considered thermal transformer and steam compressor heat pumps is the replacement of a mechanical compressor with a steam thermocompressor module (STC-unit). The working process in the STK-module is realized by using the liquid phase of the refrigerant, which boils up during expiration, subcooled to saturation, as an active medium of a jet compressor. Injection of steam from the evaporator is provided due to the fine-dispersed vapor-droplet structure formed in the outlet section of the active flow nozzle. A program for the numerical study of the working process of a step-down thermal transformer was prepared and tested, on the basis of which multivariate calculations were carried out. On the basis of computational studies, the area of achievable indicators of the proposed heat supply system has been established; the area of initial operating parameters corresponding to the maximum values of the conversion coefficient and exergy efficiency was determined; comparative indicators of the main parameters of the investigated thermal transformer on various working substances in the range of operating modes as a heat pump or a refrigerating machine were obtained. Key words: workflow, steam thermocompressor, step-down thermotransformer, energy efficiency, heat pump mode


Author(s):  
V.D. Petrash ◽  
◽  
Yu.N. Polunin ◽  
N.V. Danichenko ◽  
◽  
...  

The paper studies the range of possible and rational pre-cooling of exhaust gases in an improved heat pump of heating supply system in the development of its previously proposed basic version. The research has established analytical dependences for determining the energy flows of the condenser and evaporator, as well as the energy efficiency of the improved heat supply system. On their basis, a rational range of preliminary cooling of exhaust gases of rotary kilns was revealed, the upper level of which is determined, first of all, by their initial temperature. It has been established that the rational ratio of water consumption for heating systems with traditional temperature drops and hot water supply is in the range of 0.3-0.9. At the same time, an increase in energy efficiency is noted in the process of operational regulation of systems with a decrease in the ratio of the costs of heat carriers for technological and household purposes. The degree of precooling of exhaust gases, which significantly depends on their initial temperature, is in the range of 0.35-0.5 with a decrease in the corresponding flow rates of heat carriers in heating and hot water supply systems. The rational ratio of the consumption of the heating and heated medium in the process of contact interaction, which significantly depends on the initial temperature of the exhaust gases, is in the range of 0.2-1.2. For low-temperature waste gases (up to 500С), the reciprocal values of the analyzed ratio logically agree with the corresponding values of the irrigation coefficient. The results of the analytical study established multifactorial dependences of energy flows in the condenser and evaporator, as well as determining the energy efficiency of an improved heat pump of the heat supply system, on the basis of which the general range of possible pre-cooling of exhaust gases from rotary kilns was revealed.


2012 ◽  
Vol 170-173 ◽  
pp. 2670-2674 ◽  
Author(s):  
Shu Ling Ma ◽  
Yan Ding ◽  
Ren Jun Shen ◽  
Neng Zhu

According to the phenomenon of insufficient utilization of the geothermal water in the heat supply system of a campus in Tianjin, an optimization retrofit scheme with cascade utilization of the geothermal water is introduced in this paper. The energy efficiency of the heat supply system was improved after the retrofit: 30% of the electricity consumption was saved and an extra building area of 120,000 m2 could also be served by the same heat supply system.


2021 ◽  
Vol 2 (8 (110)) ◽  
pp. 16-22
Author(s):  
Igor Kozlov ◽  
Vyacheslav Kovalchuk ◽  
Oleksandr Klymchuk ◽  
Katerina Sova ◽  
Inna Aksyonova ◽  
...  

The possibility of a comprehensive assessment of the efficiency of the operation of a district heating system based on the indicator of the overall efficiency of the equipment OEE (overall equipment efficiency) and its extension to the system as a whole is considered. The disunity of the direction of existing approaches in assessing the efficiency of operation of district heating systems does not allow a comprehensive assessment of the overall efficiency of the functioning of the technological sequence of the entire system. It is proposed to consider efficiency as the probability of full functioning of all elements of the heat supply system. It is shown that the heat output of the boiler house is proportional to the power consumption of the boiler house and is approximated by a periodic function. It is shown that the main element of the heat supply system, which determines its efficiency, is the heat-generating source. As a result of the study, it is determined that the efficiency of the heat-generating source functioning increases as the maximum value of its efficiency is reached. Numerical modeling has shown that the flexible use of the installed heat generator capacity contributes to an increase in the efficiency factor from 0.53 to 0.70 and the overall efficiency of the heat supply system can be increased by more than 30 %. When designing a boiler house, it was recommended to provide for the installation of capacities with gradation 1; 0.5; 0.25. It is shown that the OEE indicator allows one to characterize the efficiency of both the heat supply system as a whole and its individual components, and can be used in the design and analysis of the operation of systems


Vestnik IGEU ◽  
2019 ◽  
pp. 5-13
Author(s):  
V.V. Smirnov ◽  
Yu.V. Yavorovsky ◽  
V.V. Sennikov ◽  
D.O. Romanov

Analysis of the use of a thermo-hydraulic distributor in district heating schemes showed insufficient study of the mutual influence of the connected circuits, on which the coefficient of hydraulic stability of the heating network depends, and the lack of a comparative analysis of the efficiency of heat supply when using a scheme with a thermo-hydraulic distributor compared to widely used subscriber connection schemes. The purpose of the study is to compare the economic and energy efficiency of the proposed and existing subscriber connection schemes, which is an important task. In laboratory conditions, a wide range of studies have been carried out to study the hydraulic dependence of the contours of the thermo-hydraulic distributor among themselves. Processing of the results was carried out by the method of correlation-regression analysis and mathematical statistics. In a comparative analysis of subscriber connection schemes, methods of physical modeling of thermo-hydraulic modes were used. A comparative analysis showed that the energy efficiency of the scheme with a thermo-hydraulic distributor is higher in heating systems with non-automated subscribers, regardless of the temperature graph of the heating network. When comparing schemes with parallel connection of a hot water heater, it was found that the totality of electricity consumption for coolant circulation and fuel costs for a circuit with a thermo-hydraulic distributor turned out to be less irrespective of the temperature schedule. Statistical research methods confirmed the independence of the circuits and the normal supply of heat to the heating. New solutions have been obtained to increase the hydraulic stability of the centralized heat supply system using a thermo-hydraulic distributor at a heating point – the hydraulic stability coefficient of the heat network during all subscriber operation modes is equal to one. The results of the study can be used in the design of thermal points: the proposed heating system, the consumers of which will provide a stable hydraulic mode; existing heat supply system, the consumers of which must ensure the hydro-stable control of heat.


Sign in / Sign up

Export Citation Format

Share Document