scholarly journals Cooling Temperature and Heat Transfer Coefficients in Cylindrical Heat Exchangers

2021 ◽  
Vol 15 ◽  
pp. 254-259
Author(s):  
Enrique Torres Tamayo ◽  
José W. Morales ◽  
Mauro D. Albarracín ◽  
Héctor L. Laurencio ◽  
Israel P. Pachacama ◽  
...  

The parameters behavior that characterize the process was carried out through an experimental investigation to obtain the cooling temperature, heat transfer coefficients and the heat flow in mineral coolers. The values of water temperature, water flow and mineral temperature were recorded at the inlet and outlet of the cylindrical cooler. Experiments were carried out with five values of the mass flow, keeping the cylinder revolutions constant. The calculation procedure for the system was obtained, in the mineral coolers the heat transfer by conduction, convection and evaporation predominates as a function of the cooling zone. A reduction in temperature is shown with increasing length, the lowest temperature values were obtained for a mass flow of 8 kg/s. The mineral outlet temperature should not exceed 200 oC, therefore it is recommended to work with the mass flow less than 10 kg/s that guarantees the cooling process.

2014 ◽  
Vol 960-961 ◽  
pp. 433-437 ◽  
Author(s):  
Hai Yu Meng ◽  
Shu Zhong Wang ◽  
Lu Zhou ◽  
Zhi Qiang Wu ◽  
Jun Zhao ◽  
...  

The submerged combustion vaporizer (SCV) is a new kind of vaporizer for liquefied natural gas (LNG). In this paper, a numerical study has been carried out to investigate the heat transfer characteristics of supercritical LNG in horizontal tubes. The thermo-physical properties of supercritical LNG were used for this study, and the influence of inlet LNG mass flow rate on heat transfer was investigated. Numerical results showed that the LNG flow in horizontal tubes included two stages. In the first stage, the surface heat transfer coefficients increased significantly with the increase of the fluid bulk temperature and reached a maximum value when the fluid bulk temperature equaled the pseudo-critical point . After the maximum, the surface heat transfer coefficients fell rapidly with the increase of the fluid bulk temperature. With increasing the inlet LNG mass flow rate, the surface heat transfer coefficients increased due to the increased fluid velocity in horizontal tubes.


2012 ◽  
Vol 33 (3) ◽  
pp. 1-24 ◽  
Author(s):  
Dawid Taler

Abstract This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.


1966 ◽  
Vol 17 (3) ◽  
pp. 253-268 ◽  
Author(s):  
H. D. Harris ◽  
R. E. Luxton

SummaryAn approximate method is presented for the calculation of heat transfer rates to cooled turbine blades. The method is based on a combination and extension of methods which have been developed in recent years for the calculation of the skin friction and heat transfer coefficients on wings in high speed flight. The use of the method is demonstrated by application to a specific cascade for which an experimental determination of overall heat transfer coefficient is known. Very close agreement with the experimental results is found over the range of Reynolds number tested. The calculated distribution of local heat transfer coefficient indicates that local pressure gradients have a marked effect on the heat transfer. A first-order estimate of the effect of blade cooling on the rate of mass flow through a blade passage shows that an increase of the order of one per cent in the mass flow rate may be obtained by a reasonable degree of blade cooling.


1980 ◽  
Vol 102 (3) ◽  
pp. 513-518 ◽  
Author(s):  
K. Hishida ◽  
M. Maeda ◽  
S. Ikai

An experimental study concerning the characteristics of heat transfer from a dry isothermal flat plate in two-component (water-air) mist flow has been performed for lower water-air mass flow ratios up to 2.3 percent. Heat transfer coefficients in mist flow increase several times corresponding to single phase coefficients with increasing mass flow ratio and free stream velocity, and with decreasing wall temperature. The measurements of droplet velocity employing laser Doppler anemometry indicate the similarity of velocity distributions in boundary layer of mist flow, which approximately fit the laminar single phase one. It is confirmed that an augmentation of heat transfer is attributable to a latent heat due to evaporation of water droplets within the boundary layer, and that, at a constant Reynolds number and wall temperature, the enhanced rates of heat transfer coefficients are linearly correlated to water mass flow rates for unit cross-sectional area.


Author(s):  
Fei Xue ◽  
Mohammad E. Taslim

Impingement cooling in airfoils cooling cavities, solely or combined with film and convective cooling, is a common practice in gas turbines. Depending on the cooling cavity design, the mass flow rate through individual crossover holes could vary significantly in the flow direction thus creating jets of different strengths in the target cavity. This jet flow variation, in turn, creates an impingement heat transfer coefficient variation along the channel. A test section, simulating two adjacent cooling cavities on the trailing side of an airfoil, is made up of two channels with trapezoidal cross-sectional areas. On the partition wall between the two channels, eleven crossover holes create the jets. Two distinct exit flow arrangements are investigated — a) jets, after interaction with the target surface, are turned towards the target channel exit axially and b) jets are exited from a row of racetrack-shaped slots along the target channel. Flow measurements are reported for individual holes and heat transfer coefficients on the eleven target walls downstream the jets are measured using the steady-state liquid crystal thermography technique. Smooth as well as rib-roughened target surfaces with four rib geometries (0°,45°, 90° and 135° rib angles) are tested. Correlations are developed for mass flow rate through each crossover hole for cases with different number of crossover holes, based on the pressure drop across the holes. Heat transfer coefficient variations along the target channel for all rib geometries and flow conditions are reported for a range of 5000 to 50000 local jet Reynolds numbers. Major conclusions of this study are: 1) A correlation is developed to successfully predict the mass flow rates through individual crossover holes for geometries with six to eleven crossover holes, based on the pressure drop across the holes, 2) impingement heat transfer coefficient correlates well with the local jet Reynolds number for both exit flow arrangements, and 3) the case of axial flow in the target channel exiting from the channel end, at higher jet Reynolds numbers, produced higher heat transfer coefficients than those in the case of flow exiting through a row of slots along the target channel opposite to the crossover holes.


Author(s):  
M. E. Taslim ◽  
X. Huang

Hot and harsh environments, sometimes experienced by gas turbine airfoils, can create undesirable effects such as clogging of the cooling holes. Clogging of the cooling holes along the trailing edge of an airfoil on the tip side and its effects on the heat transfer coefficients in the cooling cavity around the clogged holes is the main focus of this investigation. Local and average heat transfer coefficients were measured in a test section simulating a rib-roughened trailing edge cooling cavity of a turbine airfoil. The rig was made up of two adjacent channels, each with a trapezoidal cross sectional area. The first channel supplied the cooling air to the trailing-edge channel through a row of racetrack-shaped slots on the partition wall between the two channels. Eleven cross-over jets, issued from these slots entered the trailing-edge channel, impinged on eleven radial ribs and exited from a second row of race-track shaped slots on the opposite wall that simulated the cooling holes along the trailing edge of the airfoil. Tests were run for the baseline case with all exit holes open and for cases in which 2, 3 and 4 exit holes on the airfoil tip side were clogged. All tests were run for two cross-over jet angles. The first set of tests were run for zero angle between the jet axis and the trailing-edge channel centerline. The jets were then tilted towards the ribs by five degrees. Results of the two set of tests for a range of jet Reynolds number from 10,000 to 35,000 were compared. The numerical models contained the entire trailing-edge and supply channels with all slots and ribs to simulate exactly the tested geometries. They were meshed with all-hexa structured mesh of high near-wall concentration. A pressure-correction based, multi-block, multi-grid, unstructured/adaptive commercial software was used in this investigation. The realizable k – ε turbulence model in combination with enhanced wall treatment approach for the near wall regions were used for turbulence closure. Boundary conditions identical to those of the experiments were applied and several turbulence model results were compared. The numerical analyses also provided the share of each cross-over and each exit hole from the total flow for different geometries. The major conclusions of this study were: a) Clogging of the exit holes near the airfoil tip alters the distribution of the coolant mass flow rate through the crossover holes and changes the flow structure. Depending on the number of clogged exit holes (from 3 to 6, out of 12), the tip-end crossover hole experienced from 35% to 49% reductions in its mass flow rate while the root-end crossover hole, under the same conditions, experienced an increase of the same magnitude in its mass flow rate, b) up to 64% reduction in heat transfer coefficients on the tip-end surface areas around the clogged holes were observed which might have devastating effects on the airfoil life. At the same time, a gain in heat transfer coefficient of up 40% was observed around the root-end due to increased crossover flows, c) Numerical heat transfer results with the use of the realizable k – ε turbulence model in combination with enhanced wall treatment approach for the near wall regions were generally in a reasonable agreement with the test results. The overall difference between the CFD and test results was about 10%.


1995 ◽  
Vol 117 (4) ◽  
pp. 851-858 ◽  
Author(s):  
Y. Sun ◽  
I. S. Gartshore ◽  
M. E. Salcudean

An experimental investigation has been carried out to determine the heat/mass transfer coefficient downstream of a two-dimensional, normal, film cooling injection slot. The plate downstream of the slot is porous, and air contaminated with propane is bled through it. By measuring the propane concentration very close to the wall using a flame ionization detector, mass transfer measurements are conducted for film cooling mass flow ratios ranging from 0 to 0.5. The mass transfer coefficients are calculated using a wall function correction formula, which corrects the measurements for displacement from the surface, and are then related directly to corresponding heat transfer coefficients using the mass/heat analogy. The validity of the method and the wall function correction formula are checked by examining the case with zero film coolant injection, a situation analogous to the well-known turbulent boundary layer mass/heat transfer with impermeable/unheated starting length. Good agreement with predicted data is obtained for this experiment. For film cooling with low mass flow ratios, heat transfer coefficients close to those of a conventional turbulent boundary layer are obtained. At high values of mass flow ratios quite different trends are observed, reflecting the important effect of the separation bubble, which is present just downstream of the injection slot.


Sign in / Sign up

Export Citation Format

Share Document