scholarly journals A Wiener Model Based Closed Loop FES for Positional Control During Wrist Flexion

Author(s):  
S. J., Mahendra ◽  
Vishwanath Talasila ◽  
Abhilash G. Dutt

Functional electrical stimulation is an assistive technique used to produce functional movements in patients suffering from neurological impairments. However, existing open-loop clinical FES systems are not adequately equipped to compensate for the nonlinear, time-varying behaviour of the muscles. On the other hand, closed-loop FES systems can compensate for the aforementioned effects by regulating the stimulation to induce desired contractions. Therefore, this work aims to present an approach to implement a closed-loop FES system to enable angular positional control during wrist flexion. First, a Wiener model describing the response of the wrist flexor to pulse width modulated stimulation was identified for two healthy volunteers. Second, a nonlinear PID controller (subject-specific) was designed based on the identified models to enable angular positional control during wrist flexion. Subsequently, the controller was implemented in real-time and was tested against two reference angles on healthy volunteers. This study shows promise that the presented closed-loop FES approach can be implemented to control the angular position during wrist flexion or a novelty of the work when compared with the existing work.

1995 ◽  
Vol 05 (04) ◽  
pp. 747-755 ◽  
Author(s):  
MARIAN K. KAZIMIERCZUK ◽  
ROBERT C. CRAVENS, II

An experimental verification of previously derived small-signal low-frequency open- and closed-loop characteristics and step responses of a voltage-mode-controlled pulse-width-modulated (PWM) boost DC–DC converter is presented. The Bode plots of the voltage transfer function of the control circuit, the converter and the PWM modulator, the open-loop control-to-output and input-to-output transfer functions, the loop gain, and the closed-loop control-to-output and input-to-output transfer functions are measured. The step responses to the changes in the input voltage, the duty cycle, and the reference voltage are measured. The theoretical results were in good agreement with the measured results. The small-signal model of the converter is experimentally verified.


Author(s):  
S. J. Mahendra ◽  
Viswanath Talasila ◽  
Abhilash G. Dutt ◽  
Mukund Balaji ◽  
Abhishek C. Mouli

Functional electrical stimulation is an assistive technique that utilizes electrical discharges to produce functional movements in patients suffering from neurological impairments. In this work, a biphasic, programmable current- controlled functional electrical stimulator system is designed to enable hand grasping facilitated by wrist flexion. The developed system utilizes an operational amplifier based current source and is supported by a user interface to adjust stimulation parameters. The device is integrated with an accelerometer to measure the degree of stimulated movement. The system is validated, firstly, on two passive electrical loads and subsequently on four healthy volunteers. The device is designed to deliver currents between 0-30mA, and the error between the measured current and simulated current for two loads were -0.967±0.676mA and -0.995±0.97mA. The angular data from the accelerometer provided information regarding variations in movement between the subjects. The architecture of the proposed system is such that it can, in principle, automatically adjust the parameters of simulation to induce the desired movement optimally by measuring a stimulated movement artifact (e.g., angular position) in real time.


2020 ◽  
Vol 49 (9) ◽  
pp. 6-13
Author(s):  
N. S. Slobodzyan

The research is part of the current work on the design and research of precision actuators with parallel kinematics, designed to guide and orient of various objects. To protect the sensitive load and the supporting platform from undesirable disturbances above the permissible ones, as well as to limit the time of transient processes and the consumed power, a method for planning the trajectory of the linear actuator stem when operating in positional mode is proposed. The article describes an algorithm for calculating the parameters of the trajectory of an object under specified restrictions on speed, acceleration and acceleration derivative, and also proposes an algorithm for implementing control along a planned trajectory for a modern microprocessor system, which implements the dependence of speed on movement. The advantage of the proposed control method is the elimination of the cumulative effect of the static displacement error while observing dynamic constraints, as well as the possibility of using algorithms in both closed-loop and open-loop drives based on various types of electric motors. The article presents the results of computer simulation of an open-loop drive operating according to the proposed algorithm, the advantages and disadvantages of this approach are noted.


2020 ◽  
Vol 26 ◽  
pp. 41
Author(s):  
Tianxiao Wang

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.


2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.


2021 ◽  
Vol 13 (15) ◽  
pp. 2868
Author(s):  
Yonglin Tian ◽  
Xiao Wang ◽  
Yu Shen ◽  
Zhongzheng Guo ◽  
Zilei Wang ◽  
...  

Three-dimensional information perception from point clouds is of vital importance for improving the ability of machines to understand the world, especially for autonomous driving and unmanned aerial vehicles. Data annotation for point clouds is one of the most challenging and costly tasks. In this paper, we propose a closed-loop and virtual–real interactive point cloud generation and model-upgrading framework called Parallel Point Clouds (PPCs). To our best knowledge, this is the first time that the training model has been changed from an open-loop to a closed-loop mechanism. The feedback from the evaluation results is used to update the training dataset, benefiting from the flexibility of artificial scenes. Under the framework, a point-based LiDAR simulation model is proposed, which greatly simplifies the scanning operation. Besides, a group-based placing method is put forward to integrate hybrid point clouds, via locating candidate positions for virtual objects in real scenes. Taking advantage of the CAD models and mobile LiDAR devices, two hybrid point cloud datasets, i.e., ShapeKITTI and MobilePointClouds, are built for 3D detection tasks. With almost zero labor cost on data annotation for newly added objects, the models (PointPillars) trained with ShapeKITTI and MobilePointClouds achieved 78.6% and 60.0% of the average precision of the model trained with real data on 3D detection, respectively.


2020 ◽  
Vol 11 (1) ◽  
pp. 177
Author(s):  
Pasi Fränti ◽  
Teemu Nenonen ◽  
Mingchuan Yuan

Travelling salesman problem (TSP) has been widely studied for the classical closed loop variant but less attention has been paid to the open loop variant. Open loop solution has property of being also a spanning tree, although not necessarily the minimum spanning tree (MST). In this paper, we present a simple branch elimination algorithm that removes the branches from MST by cutting one link and then reconnecting the resulting subtrees via selected leaf nodes. The number of iterations equals to the number of branches (b) in the MST. Typically, b << n where n is the number of nodes. With O-Mopsi and Dots datasets, the algorithm reaches gap of 1.69% and 0.61 %, respectively. The algorithm is suitable especially for educational purposes by showing the connection between MST and TSP, but it can also serve as a quick approximation for more complex metaheuristics whose efficiency relies on quality of the initial solution.


Sign in / Sign up

Export Citation Format

Share Document