scholarly journals Research on solutions for connecting to marginal fields at Cuu Long basin to process and transport the products basing on existing petroleum technology and equipment

2021 ◽  
Vol 62 (3a) ◽  
pp. 65-75
Author(s):  
Thinh Van Nguyen ◽  

The Cuu Long basin is equiped with infrastructures and processing facilities serving for large-scale crude oil drilling and production operations. However, most of resevoirs in this area are now depleted, it means that they have reached their peaks and started to undergo decreasing productivity, which lead to a noticable excess capicity of equipment. In order to benefit from those declined oil fieds and maximize performance of platforms, solutions to connect marginal fields have been suggested and employed. Of which, connecting Ca Ngu Vang wellhead platform to the CPP -3 at Bach Ho oil field; platforms RC-04 and RC-DM at Nam Rong - Doi Moi oil filed to RC-1 platform at Rong oil field; wellhead platforms at Hai Su Den and Hai Su Trang oil fields to H4-TGT platform at Te Giac Trang oil field are typical examples of success. Optimistic achivements gained recently urges us to carry out this work with the aim to improve oil production of small reserves and to make best use of existing petroleum technology and equipment at the basin. Results of the research contribute an important part in the commence of producing small-scale oil deposits economically.

2017 ◽  
pp. 73-77 ◽  
Author(s):  
V. A. Ivanov ◽  
S. M. Sokolov

The issue of reliability assurance while constructing the oil field facilities by the example of West Siberian oil fields is considered. In particular, attention is paid to the problems that arise during the stage of mechanized crude oil production in case of high water cut of well produce, in severe natural and climatic conditions areas. The whole field development technological chain from the stage of crude oil production to the stage of crude-oil gathering and transportation was analyzed. For every stage the major factors, decreasing the system reliability, were determined and the suggestions for the elimination of these factors or reducing their negative influence were made. A number of possible measures for improvement field facilities construction reliability and profitability are indicated.


2019 ◽  
Vol 13 (27) ◽  
pp. 164-173
Author(s):  
Zainab Mohammed Hassan

In this work, measurements of activity concentration of naturally occurring radioactive materials (NORM) isotopes and their related hazard indices for several materials such as crude oil, sludge and water in Ahdeb oil fields in Waste governorate using high pure germanium coaxial detection technique. The average values for crude oil samples were174.72Bq/l, 43.46Bq/l, 355.07Bq/l, 264.21Bq/l, 122.52nGy/h, 0.7138, 1.1861, 0.601 mSv/y, 0.1503mSv/y and 1.8361 for Ra-226, Ac-228, K-40, Ra eq, D, H-external and H-internal respectively. According to the results; the ratio between 238U to 232Th was 4, which represents the natural ratio in the crust earth; therefore, one can be strongly suggested that the geo-stricture of the Ahdeb oil fields dose not contents any kind of rocks. Although the results indicate the rising in the activity concentration of NORM isotopes, the national and international comparisons proved that it is still in the world range limits.


1989 ◽  
Vol 7 (1) ◽  
pp. 1-14
Author(s):  
Richard D. Farmer

Most additions to proved reserves of crude oil in the United States are associated with reserve revisions and reservoir extensions, which derive exclusively from the continuing development of known oil fields. This paper reviews the major activities pursued by oil field operators that determine the level of production from those fields. Reported reserve additions reflect the consequencies of these activities for the productive capability of old fields and, thus, should be expected to be related to the costs and benefits of investing in such activities. A simple econometric, analysis is presented that demonstrates the influence of oil prices, lifting costs, taxes, and crude oil price controls on reported reserve revisions and extensions for the United States for the period 1970–1986. The strength of the relationship evaluated is particularly striking in light of the year-to-year variability of revisions data noted in other studies. Based on the economic perspective of reserve additions outlined here, U.S. reserves data for 1986 are used to provide a look at the activities that may thus be presumed to have led to the production losses recorded in that watershed year.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lianbo Zeng ◽  
Wenya Lyu ◽  
Yunzhao Zhang ◽  
Guoping Liu ◽  
Shaoqun Dong

The Chang 8 Member of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin is a typical tight sandstone reservoir and has an average porosity of 8.60% and air permeability 0.20 mD. Multi-scale faults and fractures are widely developed in these reservoirs. In this study, three-dimensional seismic data, outcrops, cores, imaging logs, and thin sections were used to classify faults and fractures at multiple scales. Combined with the oil production data, the influence of multi-scale faults and fractures on the oil enrichment and production was analyzed. The results show multi-scale faults and fractures can be divided into six levels: type-I faults, type-II faults, large-scale fractures, mesoscale fractures, small-scale fractures, and micro-scale fractures. As the scale decreases, the number of fractures increases in a power function. Type-I faults cut the caprocks and are not conducive to the preservation of oil. Type-II faults connect the source rocks and reservoirs and are migration channels of the oil source. Large-scale fractures cut the mudstone interlayer and are the seepage channel inside the reservoir. Mesoscale fractures are controlled by thick interlayers, and small-scale fractures are restricted by thin interlayers or layer interfaces. These fractures are the main seepage channels and effective storage spaces. Micro-scale fractures serve as important storage spaces for these reservoirs. The case study of oil reservoir development proves that type-I faults have the greatest impact on fluid flow, while wells drilled into the type-II faults zone have a higher oil production capacity. The oil production changes with the development degree of fractures in different scales, strikes, and positions of faults. Meso- and small-scale fractures are the key to influencing the early single-well production, and micro-scale fractures are conducive to the stable production of single wells. Consequently, multi-scale faults and fractures have significantly different effects on the oil enrichment and production of tight sandstone reservoirs, and the research conclusions can guide to the exploration and development of such similar reservoirs.


2007 ◽  
Vol 86 (12) ◽  
pp. 987-994
Author(s):  
Gento MOGI ◽  
Masanari KOIKE ◽  
Taro SAKAZUME ◽  
Narisuke NISHIIKE ◽  
Ben McNeil

Author(s):  
Sourav Kumar Bagchi ◽  
Reeza Patnaik ◽  
Ramasare Prasad

The two major bottlenecks faced during microalgal biofuel production are, (a) higher medium cost for algal cultivation, and (b) cost-intensive and time consuming oil extraction techniques. In an effort to address these issues in the large scale set-ups, this comprehensive review article has been systematically designed and drafted to critically analyze the recent scientific reports that demonstrate the feasibility of microalgae cultivation using wastewaters in outdoor raceway ponds in the first part of the manuscript. The second part describes the possibility of bio-crude oil production directly from wet algal biomass, bypassing the energy intensive and time consuming processes like dewatering, drying and solvents utilization for biodiesel production. It is already known that microalgal drying can alone account for ∼30% of the total production costs of algal biomass to biodiesel. Therefore, this article focuses on bio-crude oil production using the hydrothermal liquefaction (HTL) process that converts the wet microalgal biomass directly to bio-crude in a rapid time period. The main product of the process, i.e., bio-crude oil comprises of C16-C20 hydrocarbons with a reported yield of 50–65 (wt%). Besides elucidating the unique advantages of the HTL technique for the large scale biomass processing, this review article also highlights the major challenges of HTL process such as update, and purification of HTL derived bio-crude oil with special emphasis on deoxygenation, and denitrogenation problems. This state of art review article is a pragmatic analysis of several published reports related to algal crude-oil production using HTL technique and a guide towards a new approach through collaboration of industrial wastewater bioremediation with rapid one-step bio-crude oil production from chlorophycean microalgae.


2018 ◽  
Vol 69 (6) ◽  
pp. 1498-1500
Author(s):  
Lacramioara Olarasu ◽  
Maria Stoicescu ◽  
Ion Malureanu ◽  
Ion Onutu

In the oil industry, crude oil emulsions appear very frequently in almost all activities, starting with drilling and continuing with completion, production, transportation and processing. They are usually formed naturally or during oil production and their presence can have a strong impact on oil production and facilities. In this paper we addressed the problem of oil emulsions present in a reservoir with unfavorable flow properties. It is known that the presence of emulsions in a reservoir can influence both flow capacity and the quality of its crude oil, especially when they are associated with porous medium�s low values of permeability. Considering this, we have introduced a new procedure for selecting a special fluid of fracture. This fluid has two main roles: to create new flow paths from the reservoir rock to wells; to produce emulsion breaking of emulsified oil from pore of rocks. Best fracturing fluid performance was determined by laboratory tests. Selected fluid was then used to stimulate an oil well located on an oil field from Romania. In the final section of this paper,we are presenting a short analysis of the efficiency of the operation of hydraulic fracturing stimulation probe associated with the crude oil emulsion breaking process.


Author(s):  
Calvin Kwesi Gafrey ◽  
Robert Wilson ◽  
George Amoako ◽  
Benjamin Anderson

Developing scientific practices and procedures for finding the characteristics of various crude oils from different geological sources based on fluorescence spectra fingerprints would be beneficial to the petroleum industry. Laser-Induced Fluorescence (LIF) has gained relevance worldwide because of its advantages in crude oil analysis. Presently, the use of this technique in the characterization of crude oils from the oil fields in Ghana has not been studied. The study employed the LIF technique to determine some physical qualities of crude oils from Jubilee Oil Field, Tweneboa Enyenra Ntomme (TEN) Oil Field and Saltpond Oil Field. Specifically, this study used multivariate analysis methods to link the spectral signatures of the crude oils to their properties for identification and classification. The LIF technique was applied on four crude oil samples. Fluorescence spectra were obtained using a continuous wave 405.0 nm laser. The excitation source revealed five (5) peak wavelengths after deconvolution. Using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Hierarchical Cluster Analysis (HCA), the crude oil samples were classified accurately.


2021 ◽  
pp. 1-16
Author(s):  
Clemens Langbauer ◽  
Rudolf Konrad Fruhwirth ◽  
Lukas Volker

Summary When the oil price is low, cost optimization is vital, especially in mature oil fields. Reducing lifting costs by increasing the mean time between failure and the overall system efficiency helps to keep wells economical and increase the final recovery factor. A significant portion of artificially lifted wells currently use sucker rod pumping systems. Although its efficiency is in the upper range, there is still room for improvement compared with other artificial-liftsystems. This paper presents the field-tested sucker rod antibuckling system (SRABS), which prevents buckling of the entire sucker rod string, achieved by a redesign of the standing valve, the advantageous use of the dynamic liquid level, and, on a case-by-case basis, application of a tension element. The system allows full buckling prevention and a reduction of the overall stresses in the sucker rod string. The resulting reduction in the number of well interventions combined with the higher system efficiency prolongs economic production in mature oil fields, even in times of low oil prices. The analysis of SRABS, using finite-element simulations, showed a significant increase in system efficiency. The SRABS performance and wear tests under large-scale conditions were performed at Montanuniversität Leoben’s Pump Test Facility and in the oil field. The results of intensive laboratory testing were used to optimize the pump-body geometry and improve the wear resistance by selecting optimal materials for the individual pump components. The ongoing field-test evaluation confirmed the theoretical approach and showed the benefits achieved by using SRABS. SRABS itself can be applied within every sucker rod pumping system; the installation is as convenient as a standard pump, and manufacturing costs are comparable with those of a standard pump. This paper shows improved performance of the SRABS pumping system compared with a standard sucker rod pump. SRABS is one of the first systems that prevents the sucker rod string from buckling without any additional equipment, such as sinker bars. Testing of SRABS has identified significant benefits compared with standard sucker rod pumps.


Sign in / Sign up

Export Citation Format

Share Document