Considerations for Using a Hydraulic Fracturing Fluid for Breaking Crude Oil Emulsion from Reservoir

2018 ◽  
Vol 69 (6) ◽  
pp. 1498-1500
Author(s):  
Lacramioara Olarasu ◽  
Maria Stoicescu ◽  
Ion Malureanu ◽  
Ion Onutu

In the oil industry, crude oil emulsions appear very frequently in almost all activities, starting with drilling and continuing with completion, production, transportation and processing. They are usually formed naturally or during oil production and their presence can have a strong impact on oil production and facilities. In this paper we addressed the problem of oil emulsions present in a reservoir with unfavorable flow properties. It is known that the presence of emulsions in a reservoir can influence both flow capacity and the quality of its crude oil, especially when they are associated with porous medium�s low values of permeability. Considering this, we have introduced a new procedure for selecting a special fluid of fracture. This fluid has two main roles: to create new flow paths from the reservoir rock to wells; to produce emulsion breaking of emulsified oil from pore of rocks. Best fracturing fluid performance was determined by laboratory tests. Selected fluid was then used to stimulate an oil well located on an oil field from Romania. In the final section of this paper,we are presenting a short analysis of the efficiency of the operation of hydraulic fracturing stimulation probe associated with the crude oil emulsion breaking process.

2021 ◽  
Author(s):  
Sherif Fakher ◽  
Abdulaziz Fakher

Abstract Hydraulic fracturing is the process by which many unconventional shale reservoirs are produced from. During this process, a highly pressurized fluid, usually water, is injected into the formation with a proppant. The fracturing fluid breaks the formation thus increasing its permeability, and the proppant ensures that the formation remains open. Although highly effective, hydraulic fracturing has several limitations including relying on a highly valuable commodity such as water. This research investigates the applicability of carbon dioxide as a fracturing fluid instead of water, and studies the main advantages and limitation of such a procedure. The main properties that could have a strong impact on the applicability of carbon dioxide based hydraulic fracturing are studied; these factors include carbon dioxide properties, proppant properties, and reservoir rock, fluid, and thermodynamic properties. This research aims to function as an initial introduction and roadmap to future research investigating the applicability of carbon dioxide as a fracturing fluid in unconventional oil and gas reservoirs.


Author(s):  
Abed Saad ◽  
Nour Abdurahman ◽  
Rosli Mohd Yunus

: In this study, the Sany-glass test was used to evaluate the performance of a new surfactant prepared from corn oil as a demulsifier for crude oil emulsions. Central composite design (CCD), based on the response surface methodology (RSM), was used to investigate the effect of four variables, including demulsifier dosage, water content, temperature, and pH, on the efficiency of water removal from the emulsion. As well, analysis of variance was applied to examine the precision of the CCD mathematical model. The results indicate that demulsifier dose and emulsion pH are two significant parameters determining demulsification. The maximum separation efficiency of 96% was attained at an alkaline pH and with 3500 ppm demulsifier. According to the RSM analysis, the optimal values for the input variables are 40% water content, 3500 ppm demulsifier, 60 °C, and pH 8.


Author(s):  
Zhanqing Qu ◽  
Jiwei Wang ◽  
Tiankui Guo ◽  
Lin Shen ◽  
Hualin Liao ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
pp. 31 ◽  
Author(s):  
Dayanand Saini ◽  
Timea Mezei

 Even though water consumption per hydraulic fracturing (or fracturing) job is relatively low; nearly all of the fresh water used for fracturing in California is in the regions of high water stress such as San Jouquin and Los Angeles Basins. However, water availability should not be a concern as huge volumes of water are being produced along with oil and gas from conventional formations (i.e. associated water) in the Kern County of California, a region where most of the fracturing activities take place. This associated water can potentially be used for preparing fracturing fluids in stimulating the unconventional formations. The present study reports on the relevant investigation done in this area of interest.The results suggest that associated water chemistry has limited effect on the viscosity of cross-linked formulations. However, guar gum concentration was found to affect the breaking behaviors of cross-linked fracturing fluid formulations. The new type of commercially available biodegradable breaker was found to be effective in breaking the tested cross-linked formulations at elevated temperature which was as high as 85°C (185°F). Both crosslinking and breaking behaviors of fracturing fluid formulations evaluated in this study were found comparable to the behaviors of commonly used cross-linked formulation (guar gum + 2% potassium chloride). These results suggest that both the associated water (i.e. water resulting from regional conventional oil production activites) and sea water (offshore oil fields) could serve as alternative sources of base fluid for use in fracturing jobs without putting significant burden on precious regional fresh water resources.


1979 ◽  
Vol 16 (03) ◽  
pp. 211-224
Author(s):  
Stanley Factor ◽  
Sandra J. Grove

The first commercial oil well in Alaska was drilled in 1901, but it was in 1968 that Alaska was thrust into prominence as an oil producer with the discovery of the Prudhoe Bay field, the largest oil field ever found in the United States. This paper briefly explores the transportation-related aspects of the design, construction, and operation of the pipeline and support facilities. The pipeline terminates at Port Valdez on Prince William Sound. It is from here that the second leg of the journey to the energy-hungry lower 48 states begins. A thoroughly modern and unique marine transportation system is being utilized to transport approximately 1.2 million barrels (191 000 m3) per day of Alaskan crude oil to West and Gulf Coast refineries. The Valdez Terminal, the pipeline, the North Slope supply, and vessel particulars and operations are discussed; in addition, environmental and legal problems are outlined.


2021 ◽  
Author(s):  
Xinjun Mao ◽  
Chaofeng Chen ◽  
Renzhong Gan ◽  
Shubo Zhou ◽  
Zichao Wang ◽  
...  

Abstract The candidate wells are tight oil wells and most of the wells in the area have a low recovery rate of fracturing fluid after fracturing treatment. The lithology is glutenite with weak cementation and a high sensitivity tendency. This paper presents the process of sensitivity evaluation and fracturing fluid evaluation. Also, this paper introduces a customized and optimized clay control fracturing fluid wells in a highly sensitive reservoir. Per local national standard, traditional methods of swelling test (ST) and x-ray diffraction (XRD) were employed for qualitative formation cutting analysis. An innovative trial was then developed to evaluate cores quantitatively by water sensitivity. A clay stabilizer was then chosen to be used for the highly sensitive cores and regain permeability testing of the broken fracturing fluid was performed. Based on the analysis and evaluation, a customized treatment design was initiated for the hydraulic fracturing treatment. The qualitative evaluation showed the rock is highly water sensitive and the cores easily collapse because of weak cementation. No flow could be established during traditional core flow tests with brine. The newly developed method used kerosene as the working fluid to prevent the cores from contact with water or brine. The core flow tests resulted in a velocity sensitivity damage rate of 92%, which is considered as highly velocity sensitive. Accordingly, a special clay stabilizer was chosen to be used in the fracturing fluid and the permeability damage of the broken fracturing fluid is only 26.9%(Table 16). Field results have shown that the fracturing fluid recovery rate in treated wells is higher than the area average level and treated wells have significant oil production increase. The innovative clay control fracturing fluid and its field application reduces the influence of water and velocity sensitivity. The customized treatment with special clay stabilizer helps increase the recovery rate of fracturing fluid in reservoirs with severe clay stability and weak cementation issues.


2020 ◽  
Vol 17 (5) ◽  
pp. 1345-1355
Author(s):  
Yulia M. Ganeeva ◽  
Tatiana N. Yusupova ◽  
Ekaterina E. Barskaya ◽  
Alina Kh. Valiullova ◽  
Ekaterina S. Okhotnikova ◽  
...  

Abstract In well stimulation treatments using hydrochloric acid, undesirable water-in-oil emulsion and acid sludge may produce and then cause operational problems in oil field development. The processes intensify in the presence of Fe(III), which are from the corroded surfaces of field equipment and/or iron-bearing minerals of the oil reservoir. In order to understand the reasons of the stability of acid emulsions, acid emulsions were prepared by mixing crude oil emulsion with 15% hydrochloric acid solutions with and without Fe(III) and then separated into free and upper (water free) and intermediate (with water) layers. It is assumed that the oil phase of the free and upper layers contains the compounds which do not participate in the formation of acid emulsions, and the oil phase of the intermediate layers contains components involved in the formation of oil/acid interface. The composition of the oil phase of each layer of the emulsions was studied. It is found that the asphaltenes with a high content of sulfur, oxygen and metals as well the flocculated material of protonated non-polar oil components are concentrated at the oil/acid interface. In addition to the above, in the presence of Fe(III) the Fe(III)-based complexes with polar groups of asphaltenes are formed at the acid/oil interface, contributing to the formation of armor films which enhance the emulsion stability.


2014 ◽  
Vol 933 ◽  
pp. 202-205
Author(s):  
Bo Cai ◽  
Yun Hong Ding ◽  
Yong Jun Lu ◽  
Chun Ming He ◽  
Gui Fu Duan

Hydraulic fracturing was first used in the late 1940s and has become a common technique to enhance the production of low-permeability formations.Hydraulic fracturing treatments were pumped into permeable formations with permeable fluids. This means that as the fracturing fluid was being pumped into the formation, a certain proportion of this fluid will being lost into formation as fluid leak-off. Therefore, leak-off coefficient is the most leading parameters of fracturing fluids. The accurate understanding of leak-off coefficient of fracturing fluid is an important guidance to hydraulic fracturing industry design. In this paper, a new field method of leak-off coefficient real time analysis model was presented based on instantaneous shut-in pressure (ISIP). More than 100 wells were fractured using this method in oil field. The results show that average liquid rates of post-fracturing was 22m3/d which double improvement compared with the past treatment wells. It had an important role for hydraulic fracturing stimulation treatment design in low permeability reservoirs and was proven that the new model for hydraulic fracturing treatment is greatly improved.


2021 ◽  
Vol 62 (3a) ◽  
pp. 65-75
Author(s):  
Thinh Van Nguyen ◽  

The Cuu Long basin is equiped with infrastructures and processing facilities serving for large-scale crude oil drilling and production operations. However, most of resevoirs in this area are now depleted, it means that they have reached their peaks and started to undergo decreasing productivity, which lead to a noticable excess capicity of equipment. In order to benefit from those declined oil fieds and maximize performance of platforms, solutions to connect marginal fields have been suggested and employed. Of which, connecting Ca Ngu Vang wellhead platform to the CPP -3 at Bach Ho oil field; platforms RC-04 and RC-DM at Nam Rong - Doi Moi oil filed to RC-1 platform at Rong oil field; wellhead platforms at Hai Su Den and Hai Su Trang oil fields to H4-TGT platform at Te Giac Trang oil field are typical examples of success. Optimistic achivements gained recently urges us to carry out this work with the aim to improve oil production of small reserves and to make best use of existing petroleum technology and equipment at the basin. Results of the research contribute an important part in the commence of producing small-scale oil deposits economically.


Sign in / Sign up

Export Citation Format

Share Document