"Robustifying passive closed-loop Port-Hamiltonian systems using Observer Based Control"

Author(s):  
Matías Nacusse ◽  
Alejandro Donaire ◽  
Sergio Junco

"This paper contributes a passivity-based approach to obtain a control law that robustifies Port-Hamiltonian (pH) control systems under external and state-dependent disturbances using disturbance observers (DO). A twostage design procedure is used to define the Disturbance Observed Based Control (DOBC) scheme. In the first stage a passivity based control law, called Interconnection and Damping assignment (IDA-PBC) is designed in the Bond Graph (BG) domain via BG prototyping, using an undisturbed model of the physical system. This stage is not the main issue of this paper and therefore the IDA-PBC law will be assumed to be known. The second stage, the main result of this paper, consists in the design of the DO and its integration with the IDA-PBC control law. The DO is derived in the BG domain via the integration of the residual signal computed from a Diagnostic Bond Graph (DBG). The methodology is developed through examples in the BG domain and formalized and extended in the pH framework."

2018 ◽  
Vol 41 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Yazdan Batmani

In this paper, the problems of chaos control and chaos synchronization are solved using the state-dependent Riccati equation methods. In the former problem, a nonlinear suboptimal control law is found, which leads to a stable closed-loop system. In the latter, an optimal infinite-time horizon tracking problem is defined and solved using the state-dependent Riccati equation technique. It is shown that the synchronization error between the slave and the master systems converges asymptotically to zero under some mild conditions. Three numerical simulations are provided to demonstrate the design procedure and the flexibility of the methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xingjian Wang ◽  
Shaoping Wang

Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC) algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.


Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Katsuaki Sunakoda

Various semi-active control methods have been proposed for vibration control of civil structures. In contrast to active vibration control systems, all semi-active control systems are essentially asymptotically stable because of the stability of the structural systems themselves (with structural damping) and the energy dissipating nature of the semi-active control law. In this study, by utilizing the above property on the stability of semi-active control systems, a reduced-order structural model and a semi-active control law are simultaneously obtained so that the performance of the resulting semi-active control system becomes good. Based on the above fact any semi-active control laws derived from some models stabilize all real-existing structural systems that have structural damping. It means that the difference of dynamic behaviors between the real structural system and the reduced-order mathematical model in the sense of the open-loop response is no longer an important issue. In other words, we do not have to consider the closed-loop stability, which is one of the most important constraints in active control, in the process of the reduced-order structural modeling and the semi-active control design. We can only focus on the control performance of the closed-loop system with the real structure with the (model-based) semi-active control law in obtaining the reduced-order model. The semi-active control law in the present study is based on the one step ahead prediction of the structural response. The Genetic Algorithm (GA) is adopted to obtain the reduced-order model and the semi-active control law based on the reduced order model.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771659 ◽  
Author(s):  
VÍctor de-León-Gómez ◽  
Víctor Santibañez ◽  
Jesús Sandoval

A novel procedure for designing an interconnection and damping assignment passivity-based control to perform different walking gaits of a compass-like biped robot is presented. The interconnection and damping assignment passivity-based control method is often used to achieve asymptotic stability of the closed-loop desired equilibrium point in underactuated systems. Nevertheless, in this article, for the first time, this method is used to shape the kinetic energy of the robot and thus perform different gaits by modifying its limit cycle. One degree of underactuation of the compass-like biped robot is considered, and a suitable change of coordinates is made in order to design the proposed control law. The effectiveness of this controller and some advantages with respect to another similar approach are shown through a deep numerical simulation study.


1980 ◽  
Vol 102 (1) ◽  
pp. 21-27 ◽  
Author(s):  
S. L. Shah ◽  
D. E. Seborg ◽  
D. Grant Fisher

A new design method for state feedback controllers which minimizes the effects of arbitrary disturbances on selected outputs is presented. The design procedure permits arbitrary assignment of closed-loop eigenvalues and is based on the minimization of a quadratic performance index which includes a term for disturbance transmittances. Two numerical examples and an experimental application to a pilot scale, double effect evaporator are included to show that the resulting control systems are practical and robust. This design method can also be used to design robust observers for systems with unknown and unmeasured disturbances.


2021 ◽  
Vol 26 (1) ◽  
pp. 21
Author(s):  
Ahmad Taher Azar ◽  
Fernando E. Serrano ◽  
Nashwa Ahmad Kamal

In this paper, a loop shaping controller design methodology for single input and a single output (SISO) system is proposed. The theoretical background for this approach is based on complex elliptic functions which allow a flexible design of a SISO controller considering that elliptic functions have a double periodicity. The gain and phase margins of the closed-loop system can be selected appropriately with this new loop shaping design procedure. The loop shaping design methodology consists of implementing suitable filters to obtain a desired frequency response of the closed-loop system by selecting appropriate poles and zeros by the Abel theorem that are fundamental in the theory of the elliptic functions. The elliptic function properties are implemented to facilitate the loop shaping controller design along with their fundamental background and contributions from the complex analysis that are very useful in the automatic control field. Finally, apart from the filter design, a PID controller loop shaping synthesis is proposed implementing a similar design procedure as the first part of this study.


2021 ◽  
Vol 68 ◽  
pp. 102662
Author(s):  
Paulo Broniera Junior ◽  
Daniel Prado Campos ◽  
André Eugenio Lazzaretti ◽  
Percy Nohama ◽  
Aparecido Augusto Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document