The effects of different packaging and pressures on a dairy product treated with the high pressure processing

Author(s):  
Roberta Stefanini ◽  
Giuseppe Vignali
Food Research ◽  
2021 ◽  
Vol 5 (S1) ◽  
pp. 107-113
Author(s):  
S.M. Mustapa Kamal ◽  
A. Sulaiman ◽  
N.A. Md. Hazmi

Thermal pasteurisation is an established method for milk processing. However, the high temperature could affect the micronutrients in the milk. High pressure processing (HPP) is a cold alternative to thermal pasteurisation that can maintain the fresh-like properties of liquid food. However, employing pressure could potentially affect the composition and microstructure of milk and milk products. Therefore, this study focusses on evaluating the effect of high pressure processing (HPP) towards the composition, lactose content and microstructure (in term of fat globules) of goat milk. The goat milk was subjected to HPP at a pressure range of 200 to 600 MPa and process holding time at 5 - 15 mins. There were insignificant differences in terms of fat, protein and carbohydrate, but significant changes observed for lactose content of pressurised goat milk (PGM). The lactose content of PGM was in the range of (2.540 – 2.986 g/mL), while 1.253±0.01 g/100 mL for untreated goat milk (UGM). A higher number of the small size of goat milk fat globules observed at 600 MPa compared to lower processing pressure (200 and 400 MPa) at the same pressure holding time (5 to 15 mins). The mean diameters of fat globules were in the range of 5.215 to 5.651 μm. This size reduction of milk fat globules is an advantage for cheese making or other dairy product making industries, because it can help to possess a smoother and more refined texture of milk products.


2003 ◽  
pp. 310-332 ◽  
Author(s):  
W. Messens ◽  
J. Van Camp ◽  
K. Dewettinck

2011 ◽  
Vol 40 (8) ◽  
pp. 1136-1140 ◽  
Author(s):  
Jing-Yu Gou ◽  
Yun-Yun Zou ◽  
Geun-Pyo Choi ◽  
Young-Beom Park ◽  
Ju-Hee Ahn

2021 ◽  
Vol 38 (3) ◽  
pp. 513-531
Author(s):  
Yoon S. Song ◽  
John L. Koontz ◽  
Rima O. Juskelis ◽  
Eduardo Patazca ◽  
William Limm ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3769
Author(s):  
Noelia Pallarés ◽  
Albert Sebastià ◽  
Vicente Martínez-Lucas ◽  
Mario González-Angulo ◽  
Francisco J. Barba ◽  
...  

High-pressure processing (HPP) has emerged over the last 2 decades as a good alternative to traditional thermal treatment for food safety and shelf-life extension, supplying foods with similar characteristics to those of fresh products. Currently, HPP has also been proposed as a useful tool to reduce food contaminants, such as pesticides and mycotoxins. The aim of the present study is to explore the effect of HPP technology at 600 MPa during 5 min at room temperature on alternariol (AOH) and aflatoxin B1 (AFB1) mycotoxins reduction in different juice models. The effect of HPP has also been compared with a thermal treatment performed at 90 °C during 21 s. For this, different juice models, orange juice/milk beverage, strawberry juice/milk beverage and grape juice, were prepared and spiked individually with AOH and AFB1 at a concentration of 100 µg/L. After HPP and thermal treatments, mycotoxins were extracted from treated samples and controls by dispersive liquid–liquid microextraction (DLLME) and determined by HPLC-MS/MS-IT. The results obtained revealed reduction percentages up to 24% for AFB1 and 37% for AOH. Comparing between different juice models, significant differences were observed for AFB1 residues in orange juice/milk versus strawberry juice/milk beverages after HPP treatment. Moreover, HPP resulted as more effective than thermal treatment, being an effective tool to incorporate to food industry in order to reach mycotoxins reductions.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Monika Mieszczakowska-Frąc ◽  
Karolina Celejewska ◽  
Witold Płocharski

Nowadays, thermal treatments are used for extending the shelf-life of vegetable and fruit products by inactivating microorganisms and enzymes. On the other hand, heat treatments often induce undesirable changes in the quality of the final product, e.g., losses of nutrients, color alterations, changes in flavor, and smell. Therefore, the food industry is opening up to new technologies that are less aggressive than thermal treatment to avoid the negative effects of thermal pasteurization. Non-thermal processing technologies have been developed during the last decades as an alternative to thermal food preservation. Processing changes the structure of fruit and vegetables, and hence the bioavailability of the nutrients contained in them. In this review, special attention has been devoted to the effects of modern technologies of fruit and vegetable processing, such as minimal processing (MPFV), high-pressure processing (HPP), high-pressure homogenization (HPH), ultrasounds (US), pulsed electric fields (PEF), on the stability and bioavailability of vitamin C.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 677
Author(s):  
Cristina Serra-Castelló ◽  
Ilario Ferrocino ◽  
Anna Jofré ◽  
Luca Cocolin ◽  
Sara Bover-Cid ◽  
...  

Formulations with lactate as an antimicrobial and high-pressure processing (HPP) as a lethal treatment are combined strategies used to control L. monocytogenes in cooked meat products. Previous studies have shown that when HPP is applied in products with lactate, the inactivation of L. monocytogenes is lower than that without lactate. The purpose of the present work was to identify the molecular mechanisms underlying the piezo-protection effect of lactate. Two L. monocytogenes strains (CTC1034 and EGDe) were independently inoculated in a cooked ham model medium without and with 2.8% potassium lactate. Samples were pressurized at 400 MPa for 10 min at 10 °C. Samples were subjected to RNA extraction, and a shotgun transcriptome sequencing was performed. The short exposure of L. monocytogenes cells to lactate through its inoculation in a cooked ham model with lactate 1h before HPP promoted a shift in the pathogen’s central metabolism, favoring the metabolism of propanediol and ethanolamine together with the synthesis of the B12 cofactor. Moreover, the results suggest an activated methyl cycle that would promote modifications in membrane properties resulting in an enhanced resistance of the pathogen to HPP. This study provides insights on the mechanisms developed by L. monocytogenes in response to lactate and/or HPP and sheds light on the understanding of the piezo-protective effect of lactate.


2005 ◽  
Vol 91 (3) ◽  
pp. 699-701 ◽  
Author(s):  
David S. Lindsay ◽  
Marina V. Collins ◽  
Carly N. Jordan ◽  
George J. Flick ◽  
J. P. Dubey

Sign in / Sign up

Export Citation Format

Share Document